Src kinase is one of the key regulators of cellular metabolism and is dysregulated in numerous diseases, including cancer, neurodegenerative diseases, and particularly Alzheimer's disease. Despite its therapeutic importance, its full-length structure has never been obtained before, as it contains an intrinsically disordered regulatory region, SH4UD. The SH4UD region is crucial for Src activation, functional dimerization, and regulation by other kinases. In this study, we used the replica exchange molecular dynamics approach with a hybrid temperature and Hamiltonian tempering to obtain the conformational ensemble of full-length Src kinase in its non-phosphorylated state and in the presence of its two key regulatory phosphorylations: pY419 and pY530. The representative structures and simulation trajectories of non-phosphorylated pY419 and pY530 Src are available in open access. We demonstrate that pY419 phosphorylation, which is associated with Src activation, enhances its motility, whereas inhibited pY530 Src preserves relatively compact conformation. This study also provides insights into how SH4UD contributes to Src substrate binding, dimerization, and autophosphorylation, highlighting the putative role of 14-RRR-16 in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594451PMC
http://dx.doi.org/10.3390/ijms252212391DOI Listing

Publication Analysis

Top Keywords

src kinase
12
src
8
full-length src
8
kinase key
8
molecular dynamics
8
src activation
8
py419 py530
8
py530 src
8
structure full-length
4
key phosphorylated
4

Similar Publications

Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation".

View Article and Find Full Text PDF

Research progress of SHP-1 agonists as a strategy for tumor therapy.

Mol Divers

December 2024

Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, People's Republic of China.

Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a member of protein tyrosine phosphatase (PTP) family, and serves as a crucial negative regulator of various oncogenic signaling pathways. The development of SHP-1 agonists has garnered extensive research attention and is considered as a promising strategy for treating tumors. In this review, we comprehensively analyze the advancements of SHP-1 agonists, focusing on their structures and biological activities.

View Article and Find Full Text PDF

Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet.

View Article and Find Full Text PDF

The computational study of ligand binding to a target protein provides mechanistic insight into the molecular determinants of this process and can improve the success rate of drug design. All-atom molecular dynamics (MD) simulations can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!