Inducible T-cell costimulator (ICOS, CD278) is a costimulatory receptor primarily expressed by activated T cells. It binds to ICOS ligand (ICOSL, CD275), which is expressed by various immune and non-immune cell types, particularly in inflamed tissues. ICOSL can also bind to osteopontin (OPN), a protein that functions both as a component of the extracellular matrix and as a soluble pro-inflammatory cytokine. Previous studies, including ours, have shown that ICOS and ICOSL play a role in skin wound healing, as mice deficient in either ICOS or ICOSL exhibit delayed healing. The aim of this study was to investigate the involvement of the ICOS/ICOSL/OPN network in skin wound healing by analyzing mice that are single knockouts for ICOS, ICOSL, or OPN, or double knockouts for ICOS/OPN or ICOSL/OPN. Our results showed that wound healing is impaired in all single knockout strains, but not in the two double knockout strains. Cellular and molecular analyses of the wound healing sites revealed that the healing defect in the single knockout strains is associated with reduced neutrophil infiltration and decreased expression of α-SMA (a marker of myofibroblasts), IL-6, TNFα, and VEGF. In contrast, the normalization of wound closure observed in the double knockout strains was primarily linked to increased vessel formation. A local treatment with recombinant ICOS-Fc improved healing in all mouse strains expressing ICOSL, but not in those lacking ICOSL, and led to a local increase in vessel formation and macrophage recruitment, predominantly of the M2 type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594701 | PMC |
http://dx.doi.org/10.3390/ijms252212390 | DOI Listing |
Microsurgery
January 2025
Division of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Bonn, University of Bonn, Bonn, Germany.
Open abdomen treatment (OAT) is associated with significant morbidity and mortality. In cases where primary or delayed fascial closure cannot be achieved, vacuum-assisted wound closure and mesh-mediated fascial traction are indicated, which often result in a planned ventral hernia. If secondary skin closure is not feasible, common treatment of granulated abdominal defects involves split-thickness skin-grafting or healing by secondary intention leading to significant scarring and sometimes mutilating defects.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Shengli Street, Xingqing District, Ningxia Hui Autonomous Region 804, Yinchuan City, 753400, China.
Background: Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis due to its late-stage diagnosis and limited treatment options.
Objectives: This study aimed to elucidate the molecular mechanisms underlying PC progression and identify potential molecular targets for its diagnosis and treatment.
Methods: DAZAP1 expression in PC tissues, normal tissues and cell lines was assessed using immunohistochemistry (IHC), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting.
Cancer Cell Int
January 2025
Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.
Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Int J Biol Macromol
January 2025
School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:
Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!