A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poly(3,4-ethylenedioxythiophene) and Poly(3-octylthiophene-2,5-diyl) Molecules as Composite Transducers in Potentiometric Sensors-Synthesis and Application. | LitMetric

The aim of this paper is to investigate the influence of the molecules of conducting polymers on the properties of potentiometric sensors. Two conducting polymers, poly(3-octylthiophene-2,5-diyl) and poly(3,4-ethylene-1,4-dioxythiophene), were compared in the context of the design of ion-selective electrodes. This study offers a comparison of the most popular conducting polymers in the context of the design of potentiometric sensors. Firstly, the properties of both materials, such as their microstructure, electrical performance, wettability, and thermic properties, were examined. Subsequently, conducting polymers were applied as transducer layers in potassium-selective sensors. The properties of both groups of sensors were evaluated using the potentiometry method. Research has shown that the presence of poly(3-octylthiophene-2,5-diyl) (POT) in the transducer layer makes it superhydrophobic, leading to a long lifetime of sensors. On the other hand, the addition of poly(3,4-ethylene-1,4-dioxythiophene) polystyrene sulfonate (PEDOT:PSS) allows for the enhancement of electrical capacitance parameter values, which beneficially influence the stability of the potentiometric response of sensors. Both examined conducting polymers turned out to be perfect materials for transducer layers in potentiometric sensors, each being responsible for enhancing different properties of electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594406PMC
http://dx.doi.org/10.3390/ijms252212381DOI Listing

Publication Analysis

Top Keywords

conducting polymers
20
potentiometric sensors
12
context design
8
transducer layers
8
sensors
7
potentiometric
5
conducting
5
polymers
5
properties
5
poly34-ethylenedioxythiophene poly3-octylthiophene-25-diyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!