Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID.

Int J Mol Sci

Inserm Unit Ischémie Reperfusion, Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), UMR U1313, F-86073 Poitiers, France.

Published: November 2024

The COVID-19 outbreak caused saturations of hospitals, highlighting the importance of early patient triage to optimize resource prioritization. Herein, our objective was to test if high definition metabolomics, combined with ML, can improve prognostication and triage performance over standard clinical parameters using COVID infection as an example. Using high resolution mass spectrometry, we obtained metabolomics profiles of patients and combined them with clinical parameters to design machine learning (ML) algorithms predicting severity (herein determined as the need for mechanical ventilation during patient care). A total of 64 PCR-positive COVID patients at the Poitiers CHU were recruited. Clinical and metabolomics investigations were conducted 8 days after the onset of symptoms. We show that standard clinical parameters could predict severity with good performance (AUC of the ROC curve: 0.85), using SpO2, first respiratory rate, Horowitz quotient and age as the most important variables. However, the performance of the prediction was substantially improved by the use of metabolomics (AUC = 0.92). Our small-scale study demonstrates that metabolomics can improve the performance of diagnosis and prognosis algorithms, and thus be a key player in the future discovery of new biological signals. This technique is easily deployable in the clinic, and combined with machine learning, it can help design the mathematical models needed to advance towards personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594300PMC
http://dx.doi.org/10.3390/ijms252212199DOI Listing

Publication Analysis

Top Keywords

machine learning
12
clinical parameters
12
standard clinical
8
metabolomics
5
advantages metabolomics-based
4
metabolomics-based multivariate
4
multivariate machine
4
learning predict
4
predict disease
4
disease severity
4

Similar Publications

Background: Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility.

View Article and Find Full Text PDF

Comparative analysis of regression algorithms for drug response prediction using GDSC dataset.

BMC Res Notes

January 2025

Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.

Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.

View Article and Find Full Text PDF

Supervised machine learning statistical models for visual outcome prediction in macular hole surgery: a single-surgeon, standardized surgery study.

Int J Retina Vitreous

January 2025

Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India.

Purpose: To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.

Methods: This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded.

View Article and Find Full Text PDF

Background: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).

Methods: A comprehensive and systematic search was conducted in Pubmed, Cochrane, Embase, and Web of Science up to July 02, 2024. The quality of the studies included was assessed.

View Article and Find Full Text PDF

Objectives: This data note presents a comprehensive geodatabase of cardiovascular disease (CVD) hospitalizations in Mashhad, Iran, alongside key environmental factors such as air pollutants, built environment indicators, green spaces, and urban density. Using a spatiotemporal dataset of over 52,000 hospitalized CVD patients collected over five years, the study supports approaches like advanced spatiotemporal modeling, artificial intelligence, and machine learning to predict high-risk CVD areas and guide public health interventions.

Data Description: This dataset includes detailed epidemiologic and geospatial information on CVD hospitalizations in Mashhad, Iran, from January 1, 2016, to December 31, 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!