Int J Mol Sci
State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China.
Published: November 2024
The leaf morphology is an important agronomic trait in crop production. Our study identified a maple leaf type () cucumber mutant and located the regulatory gene for leaf shape changes through BSA results. Hybrid F1 and F2 populations were generated by F1 self-crossing, and the candidate genes were identified within the 2.8 Mb region of chromosome 2 using map cloning. Through the sequencing and expression analysis of genes within the bulk segregant analysis (BSA) region, we identified the target gene for leaf shape regulation as (CsaV3_2G026510). The change from base C to T in the original sequence led to frameshift mutations and the premature termination of translation, resulting in shortened encoded proteins and conserved WUSCHEL () box sequence loss. The specific expression analysis of the / genes in the roots, stems, leaves and other tissue types of wild-type (WT) and mutant plants revealed that was higher in the root, but (mutant gene) was significantly higher in the leaf. Subcellular localization analysis revealed that CsWOX4 was localized in the nucleus. RNA-seq analysis revealed that the differentially expressed genes were mainly enriched in the mitochondrial cell cycle phase transition, nucleosome and microtubule binding pathways. Simultaneously, the quantitative analysis of the expression trends of 25 typical genes regulating the leaf types revealed the significant upregulation of . In our study, we found that the conserved domain of CsWOX4 was missing in the mutant, and the transcriptome data revealed that the expression of some genes, such as changed simultaneously, thereby jointly regulating changes in the cucumber leaf type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595286 | PMC |
http://dx.doi.org/10.3390/ijms252212189 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
Herein, leaf polysaccharides (ANPs) were isolated, identified, and used as a particle emulsifier to stabilize Pickering emulsions. ANP was identified as a polysaccharide with a weight-average molecular weight of 383.10 ± 8.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS , Ithaca, United States.
, commonly known as the "Chinese hibiscus", is a widely cultivated shrub with ornamental and medicinal applications (Jadhav et al., 2009). However, it is known to be susceptible to a range of pathogens including bacteria (Chase, 1986).
View Article and Find Full Text PDFJ Org Chem
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.
Alstoschoquinolines A-D (-) representing three unprecedented scaffolds were isolated from the leaves of through direct separation by LC/MS detection. and consisted of a 5/6/5-coupled quinoline architecture containing six consecutive chiral carbons, while and possessed a bridged ring featuring 6/6/6/6 and 6/6/8/6 skeletons, respectively. They might be derived from the corynantheine-type indole alkaloid via sequential oxidation and rearrangement.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 520521, China.
Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.
Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.