Quinoa ( Willd.) is an annual broadleaf plant belonging to the Amaranthaceae family. It is a nutritious food crop and is considered to be drought-tolerant, but drought is still one of the most important abiotic stress factors limiting its yield. Quinoa responses to drought are related to drought intensity and genotype. This study used two different drought-responsive quinoa cultivars, LL1 (drought-tolerant) and ZK1 (drought-sensitive), to reveal the important mechanisms of drought response in quinoa by combining physiological, transcriptomic, and metabolomic analyses. The physiological analysis indicated that Chla/Chlb might be important for drought tolerance in quinoa. A total of 1756 and 764 differentially expressed genes (DEGs) were identified in LL1 and ZK1, respectively. GO (Gene Ontology) enrichment analysis identified 52 common GO terms, but response to abscisic acid (GO:0009737) and response to osmotic stress (GO:0006970) were only enriched in LL1. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that glycerophospholipid metabolism (ko00564) and cysteine and methionine metabolism (ko00270) ranked at the top of the list in both cultivars. A total of 1844 metabolites were identified by metabolomic analysis. "Lipids and lipid-like" molecules had the highest proportions. The DEMs in LL1 and ZK1 were mainly categorized 6 and 4 Human Metabolome Database (HMDB) superclasses, respectively. KEGG analysis revealed that the 'α-linolenic acid metabolism' was enriched in both LL1 and ZK1. Joint KEGG analysis also revealed that the 'α-linolenic acid metabolism' pathway was enriched by both the DEGs and DEMs of LL1. There were 17 DEGs and 8 DEMs enriched in this pathway, and methyl jasmonate (MeJA) may play an important role in the drought response of quinoa. This study will provide information for the identification of drought resistance in quinoa, research on the molecular mechanism of drought resistance, and genetic breeding for drought resistance in quinoa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594460PMC
http://dx.doi.org/10.3390/ijms252212188DOI Listing

Publication Analysis

Top Keywords

drought response
12
response quinoa
12
ll1 zk1
12
analysis revealed
12
drought resistance
12
drought
11
quinoa
9
quinoa cultivars
8
drought tolerance
8
tolerance quinoa
8

Similar Publications

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

The selection of plant genotypes characterized by wellness and stable growth under drought-stress conditions amid ongoing climate change is an important challenge in forest tree breeding. The introduction of molecular markers will enable efficient selection of breeding materials that are resistant to drought stress in forest trees as well as in crop species. Japanese cedar, Cryptomeria japonica, the most dominant forest species in Japan, grows well on mesic sites and is characterized by intraspecific variation in its drought-stress response.

View Article and Find Full Text PDF

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!