Pathogenic microorganisms can adhere to solid surfaces, leading to the formation of biofilms, thus building a physical barrier hindering the penetration and diffusion of antimicrobial compounds. In this context, the use of natural antimicrobial compounds, such as essential oil components, as substitutes for common synthetic antimicrobials in the fight to prevent antimicrobial resistance is explored. As stainless steel is one of the most widely used surfaces in different industries, we have developed an innovative antimicrobial treatment for stainless steel surfaces based on a multi-step functionalization process, in which the stainless steel surface is coated with a silica layer to which a vanillin derivative is covalently attached. The surface was analyzed by microscopy studies, indicating the correct immobilization on the surfaces. Antimicrobial studies (viability and bacterial adhesion assays) were performed against the bacteria , which is one of the most frequent causes of nosocomial infections. The results of the microbiological studies showed that vanillin-functionalized stainless steel surfaces reduce the bacteria viability by 100% and the biofilm formation on the stainless steel surface by 75% compared with non-functionalized surfaces, highlighting the contact-killing and adhesion resistance properties of the developed surface. Additional cycles using the functionalized surfaces showed good maintenance of the antimicrobial coating efficacy. Moreover, the surfaces coated with an intermediate silica layer demonstrated much greater antimicrobial activity than surfaces in which the active molecule was directly functionalized on the stainless steel surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595243 | PMC |
http://dx.doi.org/10.3390/ijms252212146 | DOI Listing |
J Indian Prosthodont Soc
January 2025
Department of Prosthodontics, Chhattisgarh Dental College and Hospital, Rajnandgaon, Chhattishgarh, India.
Aim: The aim of this study was to compare the marginal accuracy of polyetheretherketone (PEEK) and zirconia copings fabricated using computer-aided design/computer-aided manufacturing (CAD/CAM) technology, and to assess the impact of their material properties on accuracy when produced with a 4-axis milling system under controlled conditions.
Settings And Design: The study employed an in vitro design with a stainless steel die model featuring a 6 mm axial wall height, a 6-degree total occlusal convergence, and a radial shoulder finish line.
Materials And Methods: Thirty stone dies were created from silicone impressions of the metal die and poured using type-IV dental stone.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/ Geldo. Edificio 700, E-48160, Derio - Bizkaia, Spain; University of the Basque Country, Plaza Torres Quevedo, 48013 Bilbao, Spain.
Hyperspectral imaging, a rapidly evolving field, has witnessed the ascendancy of deep learning techniques, supplanting classical feature extraction and classification methods in various applications. However, many researchers employ arbitrary architectures for hyperspectral image processing, often without rigorous analysis of the interplay between spectral and spatial information. This oversight neglects the implications of combining these two modalities on model performance, consumption, and inference time.
View Article and Find Full Text PDFJ Elect Propuls
December 2024
Georgia Institute of Technology, Atlanta, GA 30332 USA.
A previous companion paper introduced a current pathways model that represents the electrical coupling between the Hall effect thruster (HET) and the ground-based vacuum test facility operational environment. In this work, we operated a 7-kW class HET at 4.5 kW, 15 A and 6 kW, 20 A on krypton to quantify aspects of the current pathways model to characterize the role metal vacuum chambers play in the thruster's discharge circuit as a function of discharge current.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Humboldt-Universitat zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, GERMANY.
Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92% conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes.
View Article and Find Full Text PDFTurk J Orthod
December 2024
Trakya University Faculty of Dentistry, Department of Orthodontics, Edirne, Turkey.
Objective: This study aims to compare the impact of titanium and stainless steel (SS) retainer wires on lower incisor stability and periodontal health.
Methods: Fifty patients between the ages of 14.1 and 29.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!