A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Secondary Metabolites According to Maturation of Perilla () on Respiratory Protective Effect in Fine Particulate Matter (PM2.5)-Induced Human Nasal Cell. | LitMetric

AI Article Synopsis

  • * This study analyzed perilla seeds and flowers at various growth stages to determine the levels of beneficial metabolites, finding that flowers generally had higher functional components than seeds.
  • * The research showed that perilla flowers, especially those harvested 20 days after flowering, provide significant respiratory protection by inhibiting harmful inflammatory markers and oxidative stress, suggesting their potential as a natural remedy.

Article Abstract

Fine particulate matter (PM2.5) exposure worsens chronic respiratory diseases through oxidative stress and inflammation. (L.) has potential respiratory protective properties, but the impact of growth stages on its beneficial metabolites is unclear. We aimed to evaluate how different growth stages affect phenolic acids, flavonoids, and polycosanols in perilla seeds and flowers and their efficacy in countering PM2.5-induced damage. Perilla seeds and flowers from five varieties at 10, 20, 30, and 40 days post-flowering were analyzed for metabolite content. Their antioxidant, anti-inflammatory, and respiratory protective effects were tested in RPMI 2650 cells. Our findings indicated that perilla flowers contained higher levels of functional components than seeds and exhibited significant variation with maturation. Phenolic acids of perilla flowers were highest at the early stages of maturation after flowering. However, individual flavones of perilla flowers were the highest at the late maturation stages after flowering. Extracts from perilla flowers harvested 20 days after flowering exhibited significant respiratory protection, effectively inhibiting inflammatory cytokines, mucus secretion, and oxidative stress markers. In conclusion, the flower parts of perilla, particularly those harvested 20 days after flowering, are useful materials for obtaining phenolic compounds, including rosmarinic acid, with high antioxidant and respiratory enhancement effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594022PMC
http://dx.doi.org/10.3390/ijms252212119DOI Listing

Publication Analysis

Top Keywords

perilla flowers
16
respiratory protective
12
perilla
8
fine particulate
8
particulate matter
8
oxidative stress
8
growth stages
8
phenolic acids
8
perilla seeds
8
seeds flowers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!