The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well understood, primarily due to limited tools for monitoring mTORC1 activity in the nucleus. In this study, we developed a genetically encoded nmTORC1 sensor, termed nTORSEL, based on the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4EBP1) by mTORC1 within the nucleus. nTORSEL, like its predecessor TORSEL, exhibits a fluorescent punctate pattern in the nucleus through multivalent protein-protein interactions between oligomerized 4EBP1 and eIF4E when nmTORC1 activity is low. We validated nTORSEL using biochemical analyses and imaging techniques across representative cell lines with varying levels of nmTORC1 activity. Notably, nTORSEL specifically detects physiological, pharmacological, and genetic inhibition of nmTORC1 in mouse embryonic fibroblast (MEF) cells but not in HEK293T cells. Therefore, nTORSEL is an effective tool for investigating nuclear mTORC1 signaling in cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594266PMC
http://dx.doi.org/10.3390/ijms252212117DOI Listing

Publication Analysis

Top Keywords

nuclear mtorc1
16
cell lines
12
mtorc1 activity
8
nmtorc1 activity
8
ntorsel
6
mtorc1
6
nmtorc1
5
nuclear
4
mtorc1 live-cell
4
live-cell sensor
4

Similar Publications

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Proliferative behaviours of CD90-expressing chondrocytes under the control of the TSC1-mTOR/PTHrP-nuclear localisation segment pathway.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China; Department of Oral Anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China. Electronic address:

Objective: Some cells in temporomandibular joint (TMJ) cartilage undergo proliferation in response to negative pressure, which can be induced in vivo by creating bilateral anterior elevation (BAE). TMJ cartilage harbours CD90-expressing cells, and CD90 expression increases under certain controlled conditions. The parathyroid hormone-related peptide (PTHrP) nuclear localisation segment (NLS) promotes chondrocyte proliferation, and mammalian target of rapamycin (mTOR) signalling plays a regulatory role in promoting PTHrP transcription.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation.

View Article and Find Full Text PDF

Protective effect of Astragaloside II against lung injury in COPD based on mTORC1/GSK-3β signaling pathway.

Eur J Pharmacol

February 2025

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. Electronic address:

Background: Astragaloside II (AST II) is one of the principal bioactive components of Astragalus mongholicus Bunge, exhibiting multiple pharmacological properties. However, the therapeutic efficacy of AST II in Chronic Obstructive Pulmonary Disease (COPD) remains to be fully elucidated. The study explored the effects and mechanisms of AST II in a COPD model induced by exposure to cigarette smoke (CS) and lipopolysaccharide (LPS) in mice.

View Article and Find Full Text PDF

The cGAS-STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance.

Immunity

December 2024

Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China. Electronic address:

Induction of autophagy is an ancient function of the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway through which autophagic cargoes are delivered to lysosomes for degradation. However, whether lysosome function is also modulated by the cGAS-STING pathway remains unknown. Here, we discovered that the cGAS-STING pathway upregulated lysosomal activity by stimulating lysosome biogenesis independently of the downstream protein kinase TANK-binding kinase 1 (TBK1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!