As an indigenous species on the Tibetan Plateau, the yak is well adapted to the plateau hypoxic environment. The high-altitude hypoxia adaptation of the yak requires the adaptive reshaping of multiple tissues and organs, especially the lungs. To reveal the adaptive development of yak lungs under hypoxic stress at the tissue and molecular levels, we conducted histomorphological observations as well as transcriptomic and metabolomic studies of yak lungs at three ages (0.5, 2.5, and 4.5 years). The results showed that the lung tissue developed significantly with age. The mean alveolar area was higher ( 0.01) in 4.5 and 2.5-year-old yaks than in 0.5-year-old yaks. The percentage of elastic fibers, micro-arterial wall thickness, and micro-arterial area showed an increasing trend ( 0.01) from 0.5-year-old yaks to 2.5-year-old yaks and then to 4.5-year-old yaks. In addition, some critical differentially expressed genes related to angiogenesis (, , ), fiber formation (), smooth muscle proliferation (), erythropoiesis (), and hypoxia response () were identified. Some metabolites associated with these genes were also found simultaneously. These findings provide a deeper understanding of the molecular strategies underlying this species' extraordinary ability to survive normally in low-oxygen environments. In conclusion, the lungs of yaks undergo continuous adaptive development under hypoxic stress, and these findings are crucial for understanding the molecular mechanisms by which native species of the Tibetan Plateau survive in harsh environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593661 | PMC |
http://dx.doi.org/10.3390/ijms252212071 | DOI Listing |
Chin Med
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFJ Hepatol
January 2025
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:
Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.
View Article and Find Full Text PDFNeurochem Res
January 2025
Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.
Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!