Analysis of -Mediated Network in Regulating Fertility Restoration in .

Int J Mol Sci

Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China.

Published: November 2024

Ogura cytoplasmic male sterility (CMS) lines play a crucial role in the utilization of heterosis. However, valuable traits, such as disease resistance genes from Ogura CMS hybrids, are challenging to incorporate for germplasm innovation, particularly in cabbage and broccoli. To date, the -mediated network regulating fertility restoration remains largely unexplored. In this study, we conducted a transcriptomic analysis of broccoli flower buds from Ogura CMS SFB45 and its -transgenic fertility restoration line, pRfo, at different stages of pollen development. Gene Ontology (GO) terms such as "pollen exine formation", "flavonoid metabolic and biosynthetic processes", and "pollen wall assembly", along with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including "flavonoid biosynthesis", "MAPK signaling pathway-plant", and "ABC transporters", were significantly enriched. We identified five differentially expressed genes (DEGs) involved in tapetum-mediated callose metabolism, thirty-four DEGs related to tapetum-mediated pollen wall formation, three DEGs regulating tapetum programmed cell death (PCD), five MPKs encoding DEGs, and twelve DEGs associated with oxidative phosphorylation. Additionally, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays demonstrated that RFO directly interacts with ORF138 at the protein level. These findings provide valuable insights into the fertility recovery mechanisms regulated by in broccoli and offer important clues for breeders aiming to enhance Ogura CMS hybrids in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593589PMC
http://dx.doi.org/10.3390/ijms252212026DOI Listing

Publication Analysis

Top Keywords

fertility restoration
12
ogura cms
12
-mediated network
8
network regulating
8
regulating fertility
8
cms hybrids
8
degs
5
analysis -mediated
4
fertility
4
ogura
4

Similar Publications

The study explores the structural and functional dynamics of rhizospheric bacterial diversity in the Pranmati basin, focusing on their ecological significance, diversity, and functional roles across dominant vegetation types; Rhododendron arboreum, Myrica esculenta, and Quercus leucotrichophora. The research provides critical insights into soil health and ecosystem functioning by analysing rhizospheric soil properties among the selected vegetations. The research findings reveal that Myrica esculenta exhibits the highest root colonization (95.

View Article and Find Full Text PDF

The environmental xenobiotic aluminum chloride (AlCl) destroys reproduction via free radicals. The present study aimed at evaluating the impact of purple and white eggplant on rat fertility when exposed to AlCl. A total of 36 male albino rats were divided into six groups: a negative control, the second given AlCl (17 mg/kg b.

View Article and Find Full Text PDF

: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of fertile age. Some studies suggest that a ketogenic diet (KD) may have a role in treating PCOS. We aimed to demonstrate the long-term effectiveness of a KD in PCOS.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!