Magnesium (Mg) is a vasodilator which may play a role in the regulation of blood pressure. The present study measured tissue Mg and calcium (Ca) levels in a hypertension model, the spontaneously hypertensive (SHR) rat, using the Wistar-Kyoto rat as a control. Mean serum Mg levels were normal in both types of rats. In SHR rats given H2O ad libitum, four of nine tissues (kidney, heart, lung, bone) had significant 6-16% decreases in Mg content (less than 0.025-0.0005). In SHR rats undergoing chronic saline diuresis, seven of nine tissues (liver, kidney, testis, heart, lung, spleen, bone) had significant 7-18% decreases in Mg content. Tissue Ca in these same rats was significantly decreased by 6-39% in four of nine tissues, but was increased in other tissues. These observations indicate that both Mg and Ca depletion can occur in selected tissues in SHR rats and the number of tissues with Mg depletion doubles during chronic saline diuresis. If Mg depletion is also found in the vascular smooth muscle of this hypertension model, it may be a contributory factor in the hypertension.

Download full-text PDF

Source

Publication Analysis

Top Keywords

shr rats
12
spontaneously hypertensive
8
hypertension model
8
heart lung
8
decreases content
8
chronic saline
8
saline diuresis
8
rats
6
tissues
6
tissue magnesium
4

Similar Publications

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Spatiotemporal analysis of the effects of exercise on the hemodynamics of the aorta in hypertensive rats using fluid-structure interaction simulation.

J Transl Int Med

February 2024

Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.

Background And Objective: Hemodynamic changes that lead to increased blood pressure represent the main drivers of organ damage in hypertension. Prolonged increases to blood pressure can lead to vascular remodeling, which also affects vascular hemodynamics during the pathogenesis of hypertension. Exercise is beneficial for relieving hypertension, however the mechanistic link between exercise training and how it influences hemodynamics in the context of hypertension is not well understood.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Changes in the intestinal microbiota induced by the postnatal environment and their association with hypertension.

Pharmacol Res

January 2025

Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil. Electronic address:

It has been established that cross-fostering impacts the development of hypertension in spontaneously hypertensive rats (SHR). However, the ability of the cross-fostering protocol to shape gut microbiota profile in SHR and impact hypertension is not known. In this sense, the current study explored the influence of normotensive and hypertensive postnatal environments on the intestinal microbiota structure, composition, and functional capacity of SHR and Wistar rats.

View Article and Find Full Text PDF

PET Imaging of a Transgenic Tau Rat Model SHR24 with [F]AV1451.

Mol Imaging Biol

January 2025

Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.

Purpose: Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!