Feature Selection and Machine Learning Approaches in Prediction of Current E-Cigarette Use Among U.S. Adults in 2022.

Int J Environ Res Public Health

Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, SC 29208, USA.

Published: November 2024

Feature selection is essentially the process of picking informative and relevant features from a larger collection of features. Few studies have focused on predictors for current e-cigarette use among U.S. adults using feature selection and machine learning (ML) approaches. This study aimed to perform feature selection and develop ML approaches in prediction of current e-cigarette use using the 2022 Health Information National Trends Survey (HINTS 6). The Boruta algorithm and the least absolute shrinkage and selection operator (LASSO) were used to perform feature selection of 71 variables. The random oversampling example (ROSE) method was utilized to deal with imbalance data. Five ML tools including support vector machines (SVMs), logistic regression (LR), random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost) were applied to develop ML models. The overall prevalence of current e-cigarette use was 4.3%. Using the overlapped 15 variables selected by Boruta and LASSO, the RF algorithm provided the best classifier with an accuracy of 0.992, sensitivity of 0.985, F1 score of 0.991, and AUC of 0.999. Weighted logistic regression further confirmed that age, education level, smoking status, belief in the harm of e-cigarette use, binge drinking, belief in alcohol increasing cancer, and the Patient Health Questionnaire-4 (PHQ4) score were associated with e-cigarette use. This study confirmed the strength of ML techniques in survey data, and the findings will guide inquiry into behaviors and mentalities of substance users.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594230PMC
http://dx.doi.org/10.3390/ijerph21111474DOI Listing

Publication Analysis

Top Keywords

feature selection
20
current e-cigarette
16
selection machine
8
machine learning
8
learning approaches
8
approaches prediction
8
prediction current
8
e-cigarette adults
8
perform feature
8
logistic regression
8

Similar Publications

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.

View Article and Find Full Text PDF

There is a pressing need to improve risk stratification and treatment selection for HPV-negative head and neck squamous cell carcinoma (HNSCC) due to the adverse side effects of treatment. One of the most important prognostic features is lymph nodes involvement. Previously, we demonstrated that tumor formation in patient-derived xenografts (i.

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.

View Article and Find Full Text PDF

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!