AI Article Synopsis

  • Collagen VI, made of three chains encoded by specific genes, is crucial for the extracellular matrix and its defects are linked to muscular diseases like Ullrich congenital muscular dystrophy (UCMD).
  • A CRISPR genome editing strategy was developed to specifically target a harmful deletion in the collagen VI gene, achieving 32% editing efficiency and restoring the protein's secretion in patient fibroblasts.
  • The edited fibroblasts not only improved collagen VI levels but also positively impacted cell interactions, suggesting that CRISPR can effectively address genetic mutations in UCMD.

Article Abstract

Collagen VI is an essential component of the extracellular matrix (ECM) composed by α1, α2 and α3 chains and encoded by , and genes. Dominant negative pathogenic variants in genes result in defects in collagen VI protein and are implicated in the pathogenesis of muscular diseases, including Ullrich congenital muscular dystrophy (UCMD). Here, we designed a CRISPR genome editing strategy to tackle a dominant heterozygous deletion c.824_838del in exon 9 of the gene, causing a lack of secreted collagen VI in a patient's dermal fibroblasts. The evaluation of efficiency and specificity of gene editing in treating patient's fibroblasts revealed the 32% efficiency of editing the mutated allele but negligible editing of the wild-type allele. CRISPR-treated UCMD skin fibroblasts rescued the secretion of collagen VI in the ECM, which restored the ultrastructure of the collagen VI microfibril network. By using normal melanocytes as surrogates of muscle cells, we found that collagen VI secreted by the corrected patient's skin fibroblasts recovered the anchorage to the cell surface, pointing to a functional improvement of the protein properties. These results support the application of the CRISPR editing approach to knock out mutated alleles and rescue the UCMD phenotype in patient-derived fibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591638PMC
http://dx.doi.org/10.3390/biom14111412DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
8
ullrich congenital
8
congenital muscular
8
muscular dystrophy
8
skin fibroblasts
8
fibroblasts
6
collagen
6
editing
5
restored collagen
4
collagen microfilaments
4

Similar Publications

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear.

View Article and Find Full Text PDF

The field of wound healing faces significant challenges, particularly in the treatment of chronic wounds, which often result in prolonged healing times and complications. Recent advancements in 3D printing technology have provided innovative solutions to these challenges, offering tailored and precise approaches to wound care. This review highlights the role of 3D printing in enhancing wound healing, focusing on its application in creating biocompatible scaffolds, custom wound dressings, and drug delivery systems.

View Article and Find Full Text PDF

Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!