The potassium sodium-activated channel subtype T member 1 () gene encodes the Slack channel K1.1, which is expressed in neurons throughout the brain. Gain-of-function variants in are associated with a spectrum of epilepsy syndromes, and mice carrying those variants exhibit a robust phenotype similar to that observed in patients. knockout (KO) mice, however, have a normal lifespan without any epileptic phenotype. To understand the molecular differences between these two models, we conducted a comprehensive proteomic analysis of the cerebral cortices of KO and mice, an animal model bearing a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. The greatest change observed in KO mice compared to the wild-type mice was the increased expression of multiple proteins of the inner mitochondrial membrane. Electron microscopy studies of cortical mitochondria from KO mice further confirmed a significant increase in the density of mitochondrial cristae compared to that in wild-type mice. reduction by a murine-specific antisense oligonucleotide (ASO) in mice partially corrected the proteomic dysregulations in the disease model. The results support the hypothesis that ASO-mediated reduction could be therapeutically useful in the treatment of epilepsies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591899 | PMC |
http://dx.doi.org/10.3390/biom14111397 | DOI Listing |
PLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFBackground: Progressive supranuclear palsy (PSP) is a devastating primary tauopathy with rapid progression to death. Although several therapies currently in the development pipeline show promising safety profiles and robust target engagement, few demonstrated significant efficacy in patients, underscoring the need to interrogate additional targets with novel therapeutic modalities to expand the potential therapeutic arsenal. To diversify the therapeutic avenues for PSP and related tauopathies (e.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Medical University of South Carolina, Charleston, SC, USA.
Background: Alzheimer's disease (AD) is associated with cognitive impairment and neuro-inflammation. Dysregulated activation of microglia and astrocytes induces neuro-inflammation, and reactive astrocytes have been classified into A1 neurotoxic and A2 neuroprotective phenotypes. A1 astrocytes are induced by activated neuro-inflammatory microglia via secreting IL-1α, TNFα and C1q, and contributing to inflammation and neuronal cell death.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
Background: Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease (PD), and Dementia with Lewy Bodies (DLB), but less so in Alzheimer's Disease (AD) despite the fact that synuclein pathology is present in over 50% of postmortem brains of AD patients. We are now expanding on our previous studies which showed positive therapeutic effects of downregulating α-syn in AD mice to understand the overall brain transcriptomic and mechanistic changes induced by treatment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Drexel University college of medicine, Philadelphia, PA, USA.
Background: In tauopathies, such as Frontotemporal Dementia (FTD), tau loses association with microtubules (MTs) and forms neurofibrillary tangles. Tau is an abundant MT-associated protein in neurons, which essentially regulate MT properties. Because pathological tau binds less avidly to MTs, which was thought to reduce the levels and stability of axonal MTs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!