Freshwater ecosystems in Lithuania are threatened by the introduction of invasive fish species including , , , and . Data on helminth parasites of these fishes have not been comprehensively studied, with only two reports on parasites of from the Curonian Lagoon and Baltic Sea, Lithuania. We examined 278 fish individuals representing 4 invasive species from 13 waterbodies. Using morphological and molecular analyses, we identified 29 helminth taxa representing 15 digenean trematodes, 6 nematodes, 4 cestodes, 2 acanthocephalans, and 2 monogeneans. With 18 species, had the highest helminth diversity, followed by (11 species) and (8 species). was found to be free from helminth infection. The availability of historical information on the native fish parasites in Lithuania allowed us to conclude that out of the 29 recorded species, invasive fish serve as hosts for 22 local fish helminth species, while 7 helminth species have been reported exclusively in invasive fish. Based on newly obtained and previously published data, a total of 34 helminth species parasitise invasive fish in Lithuania, of which 30 use these fish as intermediate or paratenic hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591254PMC
http://dx.doi.org/10.3390/ani14223293DOI Listing

Publication Analysis

Top Keywords

invasive fish
16
helminth species
12
fish
9
species
9
helminth
8
helminth parasites
8
fish lithuania
8
invasive
6
lithuania
5
parasites invasive
4

Similar Publications

Determining whether an ipsilateral breast carcinoma recurrence is a true recurrence or a new primary remains challenging based solely on clinicopathologic features. Algorithms based on these features have estimated that up to 68% of recurrences might be new primaries. However, few studies have analyzed the clonal relationship between primary and secondary carcinomas to establish the true nature of recurrences.

View Article and Find Full Text PDF

Freshwater ecosystems are highly biodiverse and important for livelihoods and economic development, but are under substantial stress. To date, comprehensive global assessments of extinction risk have not included any speciose groups primarily living in freshwaters. Consequently, data from predominantly terrestrial tetrapods are used to guide environmental policy and conservation prioritization, whereas recent proposals for target setting in freshwaters use abiotic factors.

View Article and Find Full Text PDF

The extent of alien taxa impacts on river ecosystem health is unclear, but their frequency continues to rise. We investigated 1) the prevalence of including alien taxa in common bioindicators used in river bioassessment, 2) the effect of alien taxa on the richness and abundance of natives, and 3) whether including alien taxa in bioassessment tools increased their sensitivity to river degradation. In the 17 countries analyzed fish represented the greatest number of alien species (1726), followed by macrophytes (925), macroinvertebrates (556), and diatoms (7).

View Article and Find Full Text PDF

Environmental DNA (eDNA) is revolutionizing how we investigate biodiversity in aquatic and terrestrial environments. It is increasingly used for detecting rare and invasive species, assessing biodiversity loss and monitoring fish communities, as it is considered a cost-effective and noninvasive approach. Some environments, however, can be challenging for eDNA analyses.

View Article and Find Full Text PDF

The importance of peripheral populations in the face of novel environmental change.

Proc Biol Sci

January 2025

Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.

Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!