AI Article Synopsis

  • The growing human population is causing more interactions with wildlife, leading to increased conflicts, particularly with Asian elephants in the Western Ghats of India.
  • The study analyzed six years of human-elephant conflict (HEC) data alongside ecological factors to identify causes and patterns of crop damage, property damage, and human casualties.
  • Key findings indicate that HEC is influenced by habitat conditions such as grass biomass and human activities, suggesting that reducing anthropogenic pressures could alleviate conflicts.

Article Abstract

Since the human population is growing beyond the earth's ability to sustain it, more people are being brought into contact with wildlife, leading to increasing human-wildlife conflict. The Asian elephant, a wide-ranging megaherbivore, is being increasingly threatened by human-elephant conflict [HEC]. Its conservation depends on identifying the causes of HEC and implement measure to mitigate the HEC effectively. We studied the drivers of HEC among five forest divisions in Western Ghats, India, that support a high density of elephants across Asia. Comparing the last six years' data on HEC with 26 ecological covariates in the GLMM framework, we identified spatiotemporal variations and drivers of crop, and property damages and human casualties. Spatially, HEC was highest in the territorial division and lowest in those declared as Protected Areas earlier. The comparison of crop damage with covariates showed that crop damage decreased with the grass biomass index, elephant density, extent of dry-thorn, and deciduous habitats, and forest range area, while it increased with adult male % and forest range perimeter. Similarly, the property damage by elephants increased with crop damage frequency and human settlement/cultivation area, but decreased with grass biomass, forest range area, and deciduous habitat area. Human casualties due to elephants increased with property damage, ambient temperature, and forest range perimeter, but decreased with grass biomass. Overall, the decrease in HEC with grass biomass, and the increase in HEC with human settlement and forest range perimeter indicate that anthropogenic pressure that decreases the grass biomass and degrades the habitat is the likely root cause of HEC, and minimizing it would reduce overall HEC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590974PMC
http://dx.doi.org/10.3390/ani14223193DOI Listing

Publication Analysis

Top Keywords

grass biomass
20
forest range
20
crop damage
12
decreased grass
12
range perimeter
12
hec
9
human-elephant conflict
8
western ghats
8
human casualties
8
range area
8

Similar Publications

Rational utilization of natural resources is crucial in arid and semi-arid areas due to their vulnerable ecosystems and low resource resilience. Achieving a balance between grassland production and livestock grazing, known as the pasture-livestock balance, is essential for the sustainable development of grassland resources on the Mongolian Plateau (MP). This study focuses on the grassland regions of 8 provinces in eastern Mongolia (MNG) and 7 leagues in Inner Mongolia (IMNG), China, during the period from 2018 to 2022.

View Article and Find Full Text PDF

The purpose of this study is to examine how co-pyrolysis of low-density polyethylene (LDPE) and rice husk is impacted by LDPE. It also looks into the physicochemical characteristics, thermal behavior, and kinetic parameters of these materials. To understand the thermal behavior through TGA, rice husk and LDPE blends in the ratios of LDPE: RH (50:50), LDPE: RH (25:75), and LDPE: RH (75:25) were prepared and tested.

View Article and Find Full Text PDF

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier.

View Article and Find Full Text PDF

We elucidated the changes of soil microbial biomass and community structure in soil profiles under four typical land use types (farmland, grassland, secondary forest and plantation)and across five soil layers (0-10, 10-20, 20-30, 30-40, 40-50 cm) in the northern mountainous region of Hebei Province. We measured soil microbial biomass by phospholipid fatty acid (PLFA) method, and investigated the effects of land use and soil depth on soil microbial biomass and community structure by variance analysis, correlation analysis and redundancy analysis. The results showed that soil water content, bulk density, and organic carbon content of farmland differed significantly from other land use types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!