Background: In this study, we examined the effectiveness of transfer learning in improving automatic segmentation of brain metastases on magnetic resonance imaging scans, with potential applications in preventive exams and remote diagnostics.

Methods: We trained three deep learning models on a public dataset from the ASNR-MICCAI Brain Metastasis Challenge 2024, fine-tuned them on a small private dataset, and compared their performance to models trained from scratch.

Results: Results showed that models using transfer learning performed better than scratch-trained models, though the improvement was not statistically substantial. The custom Tversky and Binary Cross-Entropy loss function helped manage class imbalance and reduce false negatives, limiting missed tumor regions. Medical experts noted that, while fine-tuned models worked well with larger, well-defined tumors, they struggled with tiny, scattered tumors in complex cases.

Conclusions: This study highlights the potential of transfer learning and tailored loss functions in medical imaging, while also pointing out the models' limitations in detecting very small tumors in challenging cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591854PMC
http://dx.doi.org/10.3390/biomedicines12112561DOI Listing

Publication Analysis

Top Keywords

transfer learning
16
brain metastases
8
models
5
transfer
4
learning approaches
4
approaches brain
4
metastases screenings
4
screenings background
4
background study
4
study examined
4

Similar Publications

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!