AI Article Synopsis

  • Neuroblastoma (NB) is a highly dangerous pediatric cancer, and current treatments for high-risk patients are not very effective, prompting research into new therapies.
  • Two new PP2A activators, ATUX-3364 and ATUX-8385, were tested in various NB cell lines and in animal models, revealing that they can activate PP2A and significantly reduce cancer cell viability, growth, and movement.
  • The study found that these activators not only hinder tumor growth in live models but also impact MYCN protein levels, suggesting potential for developing targeted therapies against MYCN in treating neuroblastoma.

Article Abstract

Background: Neuroblastoma (NB) remains one of the deadliest pediatric solid tumors. Recent advancements aimed at improving outcomes have been insufficient, and patients with high-risk NB continue to have a poor prognosis. Protein phosphatase 2A (PP2A) is a tumor suppressor protein downregulated in many cancers, including NB. PP2A activation has been shown to affect the malignant phenotype in other solid tumors. The present studies aim to investigate the effects of two novel PP2A activators as a NB therapeutic.

Methods: Four established NB cell lines and a patient-derived xenoline were utilized to study the effect on cell viability, proliferation, motility, and in vivo tumor growth using two novel tricyclic sulfonamide PP2A activators, ATUX-3364 and ATUX-8385.

Results: ATUX-3364 and ATUX-8385 increased PP2A activity. These PP2A activators led to decreased viability, proliferation, and motility of NB cells. Treatment of animals bearing NB tumors with ATUX-3364 or ATUX-8385 resulted in decreased tumor growth in -amplified SK-N-BE(2) tumors. At the molecular level, PP2A-based reactivation led to dephosphorylation of MYCN-S62 and decreased MYCN protein expression.

Conclusions: PP2A activators decreased NB cell viability, proliferation, and motility. In vivo experiments show that PP2A activators have more significant effects on tumorigenesis in tumors. Finally, phosphorylation of MYCN protein was decreased following treatment with novel sulfonamide PP2A activators. These data and mechanistic insights may be useful for developing new PP2A-based therapies that target MYCN for the treatment of NB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592631PMC
http://dx.doi.org/10.3390/cancers16223836DOI Listing

Publication Analysis

Top Keywords

pp2a activators
24
viability proliferation
12
proliferation motility
12
pp2a
9
solid tumors
8
cell viability
8
motility vivo
8
tumor growth
8
sulfonamide pp2a
8
atux-3364 atux-8385
8

Similar Publications

-Related Neurodevelopmental Disorder and Multiple Haemangiomas: A Novel Phenotypic Trait?

Pediatr Rep

December 2024

Pediatric and Rare Diseases Clinic, Microcitemico Hospital "A. Cao", Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy.

Background: Houge-Janssens syndrome 1 is a condition with onset in early childhood caused by heterozygous pathogenic variants in the gene, which encodes a B56 regulatory subunit of the serine/threonine protein phosphatase 2A (PP2A). There is evidence that the PP2A-PPP2R5D complex is involved in regulating the phosphatidylinositol 3-kinase (PI3K)/AKT signalling pathway, which is crucial for several cellular processes, including the pathogenesis and progression of haemangiomas.

Case Presentation: We report the first -related neurodevelopmental disorder case from Sardinia, a child with transient hypoglycaemia, facial dysmorphisms, and multiple haemangiomas.

View Article and Find Full Text PDF

Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region.

View Article and Find Full Text PDF
Article Synopsis
  • Bladder cancer is more common in men and has high recurrence rates, particularly for non-muscle-invasive forms.
  • Transient receptor potential canonical channels (TRPCs), especially TRPC3, influence cancer cell behavior through calcium signaling, and the study investigates the effects of the TRPC3 inhibitor Pyr3 on bladder cancer cells.
  • Pyr3 treatment led to reduced cell viability, migration, and specific protein levels associated with cancer progression, indicating its potential as a therapeutic agent for bladder cancer by targeting PKC signaling.
View Article and Find Full Text PDF

Casein kinase 1 controls components of a TORC2 signaling network in budding yeast.

J Cell Sci

December 2024

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.

Article Synopsis
  • TOR kinases are crucial for nutrient signaling and cell growth, organized into TORC1 and TORC2 complexes.
  • In budding yeast, TORC2 is particularly important for regulating growth rate and cell size, but how it functions is not fully understood.
  • Researchers discovered that the kinases Yck1 and Yck2 significantly impact the phosphorylation and localization of Mss4, a key player in TORC2 signaling, but their inhibition has minor effects on well-characterized pathways, indicating a potential role in less defined TORC2 functions.
View Article and Find Full Text PDF

When plants are exposed to drought stress, there is a trade-off between plant growth and stress responses. Here, we identified a signaling mechanism for the initial steps of the drought-growth trade-off. Phosphoproteomic profiling revealed that Raf13, a B1 subgroup Raf-like kinase, is dephosphorylated under drought conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!