: Breast cancer remains one of the biggest health challenges for women worldwide, and early detection can be truly lifesaving. Although ultrasound imaging is commonly used to detect tumors, the images are not always of sufficient quality, and, thus, traditional U-Net models often miss the finer details needed for accurate detection. This outcome can result in lower accuracy, making early and precise diagnosis more difficult. : This study presents an enhanced U-Net model integrated with a Capsule Network (called UCapsNet) to overcome the limitations of conventional techniques. Our approach improves segmentation by leveraging higher filter counts and skip connections, while the capsule network enhances classification by preserving spatial hierarchies through dynamic routing. The proposed UCapsNet model operates in two stages: first, it segments tumor regions using an enhanced U-Net, followed by a classification of the segmented images with the capsule network. : We have tested our model against well-known pre-trained models, including VGG-19, DenseNet, MobileNet, ResNet-50, and Xception. By properly addressing the limitations found in previous studies and using a capsule network trained on the Breast Ultrasound Image (BUSI) dataset, our model resulted in top-achieving impressive precision, recall, and accuracy rates of 98.12%, 99.52%, and 99.22%, respectively. By combining the U-Net's powerful segmentation capabilities with the capsule network's high classification accuracy, UCapsNet boosts diagnostic precision and addresses key weaknesses in existing methods. The findings demonstrate that the proposed model is not only more effective in detecting tumors but also more reliable for practical applications in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592068 | PMC |
http://dx.doi.org/10.3390/cancers16223777 | DOI Listing |
Sci Rep
January 2025
College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161000, China.
This study proposes a novel text classification model, MBConv-CapsNet, to address large-scale text data classification issues in the Internet era. Integrating the advantages of Mobile Inverted Bottleneck Convolutional Networks and Capsule Networks, this model comprehensively considers text sequence information, word embeddings, and contextual dependencies to capture both local and global information about the text effectively. It transforms from the original text matrix to a more compact and representative feature representation.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Yantai, Shandong 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China. Electronic address:
Purpose: To elucidate the structural-functional connectivity (SC-FC) coupling in white matter (WM) tracts in patients with major depressive disorder (MDD).
Methods: A total of 178 individuals diagnosed with MDD and 173 healthy controls (HCs) were recruited for this study. The Euclidean distance was calculated to assess SC-FC coupling.
Sci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Switzerland.
Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.
Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.
Music genres classification poses a formidable challenge as it necessitates capturing the intricate and varied characteristics of musical signals. In this study, an innovative approach is presented to classify the music genres using the Capsule Neural Network (CapsNet). The CapsNet model optimized by an advanced version of Triangulation Topology Aggregation Optimizer (ATTAO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!