Immunohistochemical Characterization of Spermatogenesis in the Ascidian .

Cells

Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan.

Published: November 2024

AI Article Synopsis

  • The study analyzes spermatogenic cells in the testis of a marine invertebrate, identifying their unique non-cystic growth pattern with various follicle sizes.
  • The researchers classified the spermatogenic cells into distinct round and elongated stages, using specific antibodies to recognize key markers throughout the process.
  • Findings suggest the presence of Sertoli cell-like characteristics in free cells outside the follicles and offer insights for future comparative studies on spermatogenesis.

Article Abstract

Animals show diverse processes of gametogenesis in the evolutionary pathway. Here, we characterized the spermatogenic cells in the testis of the marine invertebrate sperm differentiate in a non-cystic type of testis, comprising many follicles with various sizes and stages of spermatogenic cells. In the space among follicles, we observed free cells that were recognized by antibody against Müllerian inhibiting substance, a marker for vertebrate Sertoli cells. We further categorized the spermatogenic cells into four round stages (RI to RIV) and three elongated stages (EI to EIII) by morphological and immunohistochemical criteria. An antibody against a vertebrate Vasa homolog recognized a few large spermatogonium-like cells (RI) near the basal wall of a follicle. Consistent with the period of meiosis, a synaptonemal complex protein SYCP3 was recognized from early spermatocytes (RII) to early spermatids (E1). Acetylated tubulins were detected in spermatids before flagellar elongation at the RIV stage and became distributed along the flagella. Electron microscopy showed that the free cells outside the testicular follicle possessed a characteristic of vertebrate Sertoli cells. These results would provide a basis for basic and comparative studies on the mechanism of spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592721PMC
http://dx.doi.org/10.3390/cells13221863DOI Listing

Publication Analysis

Top Keywords

spermatogenic cells
12
cells
8
free cells
8
vertebrate sertoli
8
sertoli cells
8
immunohistochemical characterization
4
characterization spermatogenesis
4
spermatogenesis ascidian
4
ascidian animals
4
animals diverse
4

Similar Publications

Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women.

Elife

January 2025

Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.

View Article and Find Full Text PDF

Cisplatin (CIS) is a widely used chemotherapeutic agent, but its side effects, such as oxidative stress, inflammation, and apoptosis, often lead to male reproductive damage. Oxidative stress, primarily caused by the excessive generation of reactive oxygen species (ROS), plays a critical role in disrupting testicular homeostasis, resulting in spermatogenic impairment and tissue injury. L-cysteine (CYS), a semi-essential amino acid with potent antioxidant and anti-inflammatory properties, may offer protection against CIS-induced oxidative damage.

View Article and Find Full Text PDF

Aim: Nowadays, the electromagnetic field (EMF) has become an issue of electromagnetic pollution. This study aimed to determine the effect of 5 G Fr1 frequency band EMF waves on endoplasmic reticulum (ER) stress in testicular tissue and to demonstrate the efficacy of coenzyme Q10 (CoQ10) in suppressing the potential situation.

Materials And Methods: Three groups of eight male Sprague-Dawley rats were established.

View Article and Find Full Text PDF

Both 20S and 19S proteasome components are essential for meiosis in male mice.

Zool Res

January 2025

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China. E-mail:

The proteasome, an evolutionarily conserved proteolytic complex comprising the 20S core particle and 19S regulatory particles, performs both shared and distinct functions across various tissues and organs. Spermatogenesis, a highly complex developmental process, relies on proteasome activity at multiple stages to regulate protein turnover. In this study, we selected the 20S subunit PSMA1 and 19S regulatory subunit PSMD2 to investigate the potential functions of the proteasome in spermatogenesis.

View Article and Find Full Text PDF

Selenium yeast alleviates diquat-induced oxidative stress and testicular damage in roosters.

Anim Reprod Sci

December 2024

College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China.

Diquat (DQ) is a pro-oxidant that generates free radicals in cells through redox reactions, leading to the induction of oxidative stress. During the processes of growth and reproduction, poultry are particularly vulnerable to oxidative stress. Selenium yeast (SeY) serves as an organic selenium source characterized by high activity and low toxicity, imparting antioxidant effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!