The protein SANS is a small multifunctional scaffold protein. It is involved in several different cellular processes, such as intracellular transport, in the cytoplasm, or splicing of pre-mRNA, in the cell nucleus. Here, we aimed to gain insight into the regulation of the subcellular localization and the nuclear-cytoplasmic shuttling of SANS and its paralog ANKS4B, not yet reported in the nucleus. We identified karyopherins mediating the nuclear import and export by screening the nuclear interactome of SANS. Sequence analyses predicted in silico evolutionarily conserved nuclear localization sequences (NLSs) and nuclear export sequences (NESs) in SANS, but only NESs in ANKS4B, which are suitable for karyopherin binding. Quantifying the nuclear-cytoplasmic localization of wild-type SANS and NLS/NES mutants, we experimentally confirmed in silico predicted NLS and NES functioning in the nuclear-cytoplasmic shuttling in situ in cells. The comparison of SANS and its paralog ANKS4B revealed substantial differences in the interaction with the nuclear splicing protein PRPF31 and in their nuclear localization. Finally, our results on pathogenic USH1G/SANS mutants suggest that the loss of NLSs and NESs and thereby the ability to control nuclear-cytoplasmic shuttling is disease-relevant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592671PMC
http://dx.doi.org/10.3390/cells13221855DOI Listing

Publication Analysis

Top Keywords

nuclear-cytoplasmic shuttling
16
paralog anks4b
12
protein sans
8
sans paralog
8
nuclear localization
8
sans
7
nuclear
6
nuclear-cytoplasmic
5
shuttling usher
4
usher syndrome
4

Similar Publications

PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters.

View Article and Find Full Text PDF

RNA is a central molecule for viruses; however, the interactions that viral RNA (vRNA) establishes with the host cell is only starting to be elucidated. Here, we determine the ribonucleoprotein (RNP) composition of the prototypical arthropod-borne Sindbis virus (SINV). We show that SINV RNAs engage with hundreds of cellular proteins, including a group of nuclear RNA-binding proteins (RBPs) with unknown roles in infection.

View Article and Find Full Text PDF

: Long non-coding RNA taurine-upregulated gene 1 (TUG1) is involved in various cellular processes, but its role in cerebral ischemia-reperfusion injury remains unclear. This study investigated TUG1's role in regulating the nucleocytoplasmic shuttling of human antigen R (HuR), a key apoptosis regulator under ischemic conditions. : CRISPR-Cas9 technology was used to generate TUG1 knockout Sprague Dawley rats to assess TUG1's impact on ischemic injury.

View Article and Find Full Text PDF

The protein SANS is a small multifunctional scaffold protein. It is involved in several different cellular processes, such as intracellular transport, in the cytoplasm, or splicing of pre-mRNA, in the cell nucleus. Here, we aimed to gain insight into the regulation of the subcellular localization and the nuclear-cytoplasmic shuttling of SANS and its paralog ANKS4B, not yet reported in the nucleus.

View Article and Find Full Text PDF

Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases.

Mol Med

November 2024

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Article Synopsis
  • Smad5 is a key protein in the bone morphogenetic protein (BMP) signaling pathway, influencing various functions in respiratory diseases while its individual roles have been underexplored.
  • This review focuses on Smad5's gene characteristics, protein structure, localization, and involvement in diseases like COPD, asthma, PAH, lung cancer, and IPF—with emphasis on cell behavior like proliferation and apoptosis.
  • The paper highlights Smad5's unique nuclear-cytoplasmic shuttling abilities, which may be significant in understanding its role in the development and progression of respiratory diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!