Phosphorus (P) deficiency is a major global factor constraining peanut production. Exogenous γ-aminobutyric acid (GABA) and Ca are essential to improve stress resilience in peanuts growing under low-P conditions. This study therefore examined the detailed physiological effects of GABA-Ca on restoring peanut growth under low-P conditions. These included the root-shoot ratio, leaf nutrients, photochemical activity, reactive oxygen species (ROS), cyclic electron flow (CEF), ATP synthase activity, and the proton gradient (∆pH), all of which were measured under low-P (LP, 0.5 mM) and optimized-P (1 mM) conditions. Specifically, supplying GABA-Ca under LP conditions regulated the ∆pH by causing adjustments in CEF and ATP synthase activities, buffering the photosystems' activities, restoring the antioxidant enzyme system, and lowering ROS production. Interestingly, exogenous GABA-Ca restored peanut growth under low-P conditions, possibly by the putative signaling crosstalk between GABA and Ca. The plausible signal amplification between GABA and Ca suggested that the combination of GABA and Ca, may offer an effective strategy for enhancing peanut adaptation to low-P conditions. Moving forward, the strategic supplementation of GABA-Ca, either during cultivation or through the formulation of novel fertilizers, opens up many possibilities for better and more resilient plant production in soils with low P.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590983PMC
http://dx.doi.org/10.3390/antiox13111414DOI Listing

Publication Analysis

Top Keywords

low-p conditions
16
exogenous gaba-ca
8
peanut growth
8
growth low-p
8
cef atp
8
atp synthase
8
low-p
6
conditions
6
gaba-ca alleviates
4
alleviates growth
4

Similar Publications

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.

View Article and Find Full Text PDF

This study aimed to investigate the impact of different offensive-reward-related rules on the physical performance, perceived exertion and enjoyment of young basketball players during small-sided games (SSG). Eighteen youth male players (age: 13.3±0.

View Article and Find Full Text PDF

Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions.

Planta

December 2024

Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.

Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.

View Article and Find Full Text PDF

Aims: High Phosphorus (P) efficiencies such as internal P utilization efficiency (PUE) and P acquisition efficiency (PAE) are crucial for upland rice production, particularly on highly P-fixing soils like Andosols. While the effect of root traits associated with high PAE in upland rice has been studied intensively, less attention has been given to the origin of P (native soil-P versus fertilizer-P) taken up by plants when evaluating differences in P efficiency. Here we aim to evaluate the efficiency of different upland rice genotypes to acquire native soil-P and fertilizer-P.

View Article and Find Full Text PDF

Background: Plants utilize a variety of mechanisms to adapt to fluctuations in phosphorus (P) availability. Potatoes, in comparison to other crops, often display reduced phosphorus use efficiency (PUE) due to their underdeveloped root systems; therefore, understanding the mechanisms underlying PUE is critical for improving it. This study aimed to evaluate the morphological and physiological responses of potatoes to different P levels, with a focus on root system alterations and PUE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!