To investigate the interaction effects of prolonged working periods and different task loads on response lapses, focusing on the mechanisms of delayed responses and error lapses. Professionals such as pilots, truck drivers, and nurses often face extended work hours and fluctuating task loads. While these factors individually affect performance, their interaction and its impact on response lapses remain unclear. Twenty participants completed the Uchida-Kraepelin (U-K) Psychological Test and a dual-task version with functional near-infrared spectroscopy. Independent variables were time-on-task and task load. Dependent variables included measures of fatigue, arousal, workload, task performance (delayed and error rates), and brain functional connectivity. Both time-on-task and task load significantly affected cerebral connectivity, response lapses, workload (frustration level), fatigue, and arousal. Arousal levels significantly decreased and reaction times increased after 60 min of work. Cognitive resource regulation became challenging after 90 min under high task load levels. A decline in the connection between the prefrontal and occipital cortex during high-load tasks was observed. The findings provide insight into the mechanisms of response lapses under different task load levels and can inform strategies to mitigate these lapses during extended work periods. This study's findings can be applied to improve work schedules and fatigue management in industries like aviation, transportation, and healthcare, helping reduce response lapses and errors during extended work periods under high task load conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590984 | PMC |
http://dx.doi.org/10.3390/bs14111086 | DOI Listing |
Scand J Med Sci Sports
January 2025
School of Physical Education, Shanghai University of Sport, Shanghai, China.
Long-term training enables professional athletes to develop concentrated and efficient neural network organizations for specific tasks. This study used functional near-infrared spectroscopy to investigate task performance, brain functional characteristics, and their relationships in footballers during sport-specific motor-cognitive processes. Twenty-four footballers (athlete group, with 18 remaining of good signal quality) and 20 non-footballers (control group, with 16 remaining) completed four tasks: a single task (trigger buttons corresponding to the appearance direction of teammates with kicking actions), an N-back direction task, a dual task, and an N-back digit task.
View Article and Find Full Text PDFJ Biomed Phys Eng
December 2024
Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Background: Acquiring new knowledge necessitates alterations at the synaptic level within the brain. Glutamate, a pivotal neurotransmitter, plays a critical role in these processes, particularly in learning and memory formation. Although previous research has explored glutamate's involvement in cognitive functions, a comprehensive understanding of its real-time dynamics remains elusive during memory tasks.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada.
High-load resistance exercise (>60% of 1-repetition maximum) is a well-known stimulus to enhance skeletal muscle hypertrophy with chronic training. However, studies have intriguingly shown that low-load resistance exercise training (RET) (≤60% of 1-repetition maximum) can lead to similar increases in skeletal muscle hypertrophy as compared to high-load RET. This has raised questions about the underlying mechanisms for eliciting the hypertrophic response with low-load RET.
View Article and Find Full Text PDFPhysiother Theory Pract
December 2024
Department of Physiotherapy and Rehabilitation, Atlas University, Istanbul, Turkey.
Background: Dual-task activities, which involve performing two separate tasks simultaneously, often result in reduced motor function and daily activity performance among individuals with knee osteoarthritis (OA).
Objective: This study aimed to investigate the impact of single- and dual-task conditions on muscle strength and performance in individuals with knee OA and examine how cognitive load influences physical task performance in this population.
Methods: Sixty patients with knee OA were included.
Hear Res
December 2024
Clinics of Otolaryngology, Hannover Medical School, Hearing Center Hannover (DHZ), Karl-Wiechert-Allee 3, 30625 Hannover, Germany; Institute of AudioNeuroTechnology (VIANNA) & Dept. of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany. Electronic address:
Objective: We investigated auditory working-memory using behavioural measures and electroencephalography (EEG) in adult Cochlear Implant (CI) users with varying degrees of CI performance.
Methods: 24 adult CI listeners (age: M = 61.38, SD = 12.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!