Background/objectives: The study of microbiome composition shows positive indications for application in the diagnosis and treatment of many conditions and diseases. One such condition is autism spectrum disorder (ASD). We aimed to analyze gut microbiome samples from children in Bosnia and Herzegovina to identify microbial differences between neurotypical children and those with ASD. Additionally, we developed machine learning classifiers to differentiate between the two groups using microbial abundance and predicted functional pathways.
Methods: A total of 60 gut microbiome samples (16S rRNA sequences) were analyzed, with 44 from children with ASD and 16 from neurotypical children. Four machine learning algorithms (Random Forest, Support Vector Classification, Gradient Boosting, and Extremely Randomized Tree Classifier) were applied to create eight classification models based on bacterial abundance at the genus level and KEGG pathways. Model accuracy was evaluated, and an external dataset was introduced to test model generalizability.
Results: The highest classification accuracy (80%) was achieved with Random Forest and Extremely Randomized Tree Classifier using genus-level taxa. The Random Forest model also performed well (78%) with KEGG pathways. When tested on an independent dataset, the model maintained high accuracy (79%), confirming its generalizability.
Conclusions: This study identified significant microbial differences between neurotypical children and children with ASD. Machine learning classifiers, particularly Random Forest and Extremely Randomized Tree Classifier, achieved strong accuracy. Validation with external data demonstrated that the models could generalize across different datasets, highlighting their potential use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592508 | PMC |
http://dx.doi.org/10.3390/diagnostics14222536 | DOI Listing |
JAMA Netw Open
January 2025
Department of Child and Adolescent Psychiatry-Psychotherapy, University Hospital Ulm, Ulm, Germany.
Importance: Associations between child maltreatment (CM) and health have been studied broadly, but most studies focus on multiplicity (number of experienced subtypes of CM). Studies assessing multiple CM characteristics are scarce, partly due to methodological challenges, and were mostly conducted in patient samples.
Objective: To determine the importance of CM characteristics in association with physical multimorbidity in adulthood for women and men in a German representative sample.
Environ Monit Assess
January 2025
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China.
Investigating the effects of urbanization at the county level on the balance of the carbon budget is essential for progress toward achieving "dual carbon" objectives at the county scale. Based on land use and economic data, this study elucidates the spatiotemporal evolution of urbanization and carbon budget balance ratio in 84 counties in Jiangxi Province from 1980 to 2020. Optimal geographic detectors and geographically weighted random forests were used to explore the impact of urbanization on the carbon budget balance ratio.
View Article and Find Full Text PDFGeriatrics (Basel)
January 2025
School of Telematics, University of Colima, Colima 28040, Mexico.
: Hospitalization among older adults is a growing challenge in Mexico due to the high prevalence of chronic diseases and limited public healthcare resources. This study aims to develop a predictive model for hospitalization using longitudinal data from the Mexican Health and Aging Study (MHAS) using the random forest (RF) algorithm. : An RF-based machine learning model was designed and evaluated under different data partition strategies (ST) with and without variable interaction.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Department of Medicine, Division of Cardiology (M.P., N.J.P., N.P.S.), Duke University, Durham, NC.
Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.
Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.
Stat Methods Med Res
January 2025
School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China.
One primary goal of precision medicine is to estimate the individualized treatment rules that optimize patients' health outcomes based on individual characteristics. Health studies with multiple treatments are commonly seen in practice. However, most existing individualized treatment rule estimation methods were developed for the studies with binary treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!