Background: Glial fibrillary acidic protein (GFAP) is an important biomarker for neuroinflammatory conditions. Recently, advancements in the treatment of neurological diseases have highlighted the increasing importance of biomarkers, creating a demand for accurate and simple measurement systems for GFAP levels, which are essential for both research and clinical applications. This study presents the development and validation of a novel fully automated immunoassay for the quantitative determination of GFAP levels in biological samples.

Methods: We examined the analytical performance of the GFAP assay on the LUMIPULSE platform. The assay's parameters, including antibody concentrations, incubation times, and detection methods, were optimized to enhance sensitivity and specificity. GFAP levels were measured in 396 serum or plasma samples, comprising both healthy controls and patients with neurodegenerative diseases.

Results: In the analytical performance studies, intra- and inter-assay coefficients of variation (CV) were below 5%, indicating high reproducibility. Additionally, the assay demonstrated good linearity over the measurement range. The limit of quantification (LoQ) for this assay was 6.0 pg/mL, which is sufficient for measuring specimens from healthy controls. In clinical validation studies, GFAP levels were significantly elevated in patients with neurodegenerative diseases compared to healthy controls.

Conclusions: This automated GFAP assay provides a robust and reliable tool for GFAP measurement, facilitating further research into GFAP's role in neurological disorders and potentially aiding in the diagnosis and monitoring of these conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593324PMC
http://dx.doi.org/10.3390/diagnostics14222520DOI Listing

Publication Analysis

Top Keywords

gfap levels
16
glial fibrillary
8
fibrillary acidic
8
fully automated
8
gfap
8
analytical performance
8
gfap assay
8
healthy controls
8
patients neurodegenerative
8
acidic protein's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!