A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Integrative Framework for Healthcare Recommendation Systems: Leveraging the Linear Discriminant Wolf-Convolutional Neural Network (LDW-CNN) Model. | LitMetric

An Integrative Framework for Healthcare Recommendation Systems: Leveraging the Linear Discriminant Wolf-Convolutional Neural Network (LDW-CNN) Model.

Diagnostics (Basel)

Department of Material Science and Technology, AUDI Hungaria Faculty of Vehicle Engineering, Széchenyi István University, H-9026 Győr, Hungary.

Published: November 2024

In the evolving healthcare landscape, recommender systems have gained significant importance due to their role in predicting and anticipating a wide range of health-related data for both patients and healthcare professionals. These systems are crucial for delivering precise information while adhering to high standards of quality, reliability, and authentication. : The primary objective of this research is to address the challenge of class imbalance in healthcare recommendation systems. This is achieved by improving the prediction and diagnostic capabilities of these systems through a novel approach that integrates linear discriminant wolf (LDW) with convolutional neural networks (CNNs), forming the LDW-CNN model. : The LDW-CNN model incorporates the grey wolf optimizer with linear discriminant analysis to enhance prediction accuracy. The model's performance is evaluated using multi-disease datasets, covering heart, liver, and kidney diseases. Established error metrics are used to compare the effectiveness of the LDW-CNN model against conventional methods, such as CNNs and multi-level support vector machines (MSVMs). : The proposed LDW-CNN system demonstrates remarkable accuracy, achieving a rate of 98.1%, which surpasses existing deep learning approaches. In addition, the model improves specificity to 99.18% and sensitivity to 99.008%, outperforming traditional CNN and MSVM techniques in terms of predictive performance. : The LDW-CNN model emerges as a robust solution for multidisciplinary disease prediction and recommendation, offering superior performance in healthcare recommender systems. Its high accuracy, alongside its improved specificity and sensitivity, positions it as a valuable tool for enhancing prediction and diagnosis across multiple disease domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592656PMC
http://dx.doi.org/10.3390/diagnostics14222511DOI Listing

Publication Analysis

Top Keywords

ldw-cnn model
20
linear discriminant
12
healthcare recommendation
8
recommendation systems
8
recommender systems
8
systems
6
ldw-cnn
6
model
6
healthcare
5
integrative framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!