Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
mushroom has been proven to have anti-aging bioactivities. However, few studies have focused on edible mushroom feet peptides (PEMFPeps). In this paper, the effects of delaying the senescence of D-Galactose-induced PC12 cells were evaluated, and the mechanisms were also investigated. PEMFPeps were prepared by alkaline protease enzymolysis of edible mushroom feet protein (PEMFP), which mainly consisted of a molecular weight of less than 1000 Da peptides, primarily occupying 89.15% of the total. Simulated digestion in vitro of mushroom feet peptides (SID-PEMFPeps) was obtained in order to further evaluate the bioactivity after digestion. The peptide sequences of PEMFPeps and SID-PEMFPeps were detected by LC-MS/MS subsequently. Five new peptides of PEMFPeps and one new peptide of SID-PEMFPeps were identified. The effects of PEMFP, PEMFPeps, and SID-PEMFPeps on D-Galactose-induced senescence of PC12 cells were evaluated. PEMFP, PEMFPeps, and SID-PEMFPeps could all enhance antioxidant enzyme activities significantly, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT); decrease the intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS); and inhibit the senescence-associated β-galactosidase (SA-β-gal) activity, among which SID-PEMFPeps showed the best effects. Western blotting analysis confirmed that SID-PEMFPeps significantly regulated the expressions of key proteins such as TLR4, IKKα, IκBα, p65, ERK, and JNK1/2/3, which indicated that SID-PEMFPeps could delay D-Gal-induced senescence of PC12 cells through TLR4/NF-κB/MAPK signaling pathways. This is the first time to investigate PEMFPeps and SID-PEMFPeps protective effects and mechanisms. Our study could lay a solid foundation for PEMFPeps to be used as nutritional supplementation to reduce aging-related damage. And the application of PEMFPeps could also provide optional solutions in exploring more edible protein resources for human beings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593523 | PMC |
http://dx.doi.org/10.3390/foods13223668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!