AI Article Synopsis

  • The study investigates the essential oils from kumquat, a small citrus fruit, focusing on their chemical profile, bioactive components, and biological activities using various extraction methods (microwave-assisted distillation and Clevenger hydrodistillation).
  • It assesses the cytotoxic effects of kumquat essential oils on different cancer cell lines (HeLa, HCT116, U2OS) and a healthy cell line (RPE1), finding the oils showed notable cytotoxicity in cancer cells but less effect on healthy cells.
  • Besides cytotoxicity, the essential oils exhibited antioxidant and antibacterial activities, with major components like limonene remaining stable post-digestion, contributing to their potential for health benefits.

Article Abstract

Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil's biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate the chemical profile of kumquat essential oils (KEOs) isolated by microwave-assisted distillation (MAD) and Clevenger hydrodistillation using GC-MS analysis. To test the bioaccessibility of their bioactive components, in vitro digestion with commercially available enzymes was performed. The final step of this research was to test their cytotoxic activity against a cervical cancer cell line (HeLa), a human colon cancer cell line (HCT116), a human osteosarcoma cell line (U2OS), and a healthy cell line (RPE1). Two methods were used to test the antioxidant activity: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity). The antibacterial activity was tested in relation to the growth and adhesion of and on a polystyrene surface. The GC-MS analysis showed that the major compound in both kumquat essential oils was limonene, which was stable before and after in vitro digestion (>90%). The results showed that the cytotoxic activity of the KEOs in all three cancer cell lines tested was IC 1-2 mg/mL, and in the healthy cell line (RPE1), the IC value was above 4 mg/mL. The antibacterial activity of the KEOs obtained after MAD and Clevenger hydrodistillation was 4 mg/mL against and 1 mg/mL against . The KEOs after MAD and Clevenger hydrodistillation reduced the adhesion of by more than 1 log, while there was no statistically significant effect on the adhesion of to the polystyrene surface. Both KEOs exhibited comparable levels of antioxidant activity using both methods tested, with IC50 values of 855.25 ± 26.02 μg/mL (after MAD) and 929.41 ± 101.57 μg/mL (after Clevenger hydrodistillation) for DPPH activity and 4839.09 ± 91.99 μmol TE/g of EO (after MAD) and 4928.78 ± 275.67 μmol TE/g of EO (after Clevenger hydrodistillation) for ORAC. The results obtained show possible future applications in various fields (e.g., in the food, pharmaceutical, cosmetic, and agricultural industries).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594046PMC
http://dx.doi.org/10.3390/foods13223545DOI Listing

Publication Analysis

Top Keywords

clevenger hydrodistillation
20
vitro digestion
12
essential oils
12
mad clevenger
12
cancer cell
12
chemical profile
8
profile kumquat
8
activity
8
kumquat essential
8
gc-ms analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!