Identifying Key Nodes for the Influence Spread Using a Machine Learning Approach.

Entropy (Basel)

Department of Artificial Intelligence, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.

Published: November 2024

The identification of key nodes in complex networks is an important topic in many network science areas. It is vital to a variety of real-world applications, including viral marketing, epidemic spreading and influence maximization. In recent years, machine learning algorithms have proven to outperform the conventional, centrality-based methods in accuracy and consistency, but this approach still requires further refinement. What information about the influencers can be extracted from the network? How can we precisely obtain the labels required for training? Can these models generalize well? In this paper, we answer these questions by presenting an enhanced machine learning-based framework for the influence spread problem. We focus on identifying key nodes for the Independent Cascade model, which is a popular reference method. Our main contribution is an improved process of obtaining the labels required for training by introducing "Smart Bins" and proving their advantage over known methods. Next, we show that our methodology allows ML models to not only predict the influence of a given node, but to also determine other characteristics of the spreading process-which is another novelty to the relevant literature. Finally, we extensively test our framework and its ability to generalize beyond complex networks of different types and sizes, gaining important insight into the properties of these methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592689PMC
http://dx.doi.org/10.3390/e26110955DOI Listing

Publication Analysis

Top Keywords

key nodes
12
identifying key
8
influence spread
8
machine learning
8
complex networks
8
labels required
8
influence
4
nodes influence
4
spread machine
4
learning approach
4

Similar Publications

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.

View Article and Find Full Text PDF

S100A8/A9 Promotes Dendritic Cell-Mediated Th17 Cell Response in Sjögren's Dry Eye Disease by Regulating the Acod1/STAT3 Pathway.

Invest Ophthalmol Vis Sci

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.

Purpose: To investigate the role of S100A8/A9 in the pathogenesis of Sjögren's dry eye disease (SjDED) and explore its potential mechanism of action.

Methods: S100A8/A9 expression was determined by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Tear secretion, corneal fluorescein staining, and hematoxylin and eosin staining were used to evaluate the effect of paquinimod, a S100A8/A9 inhibitor, on dry eye disease in nonobese diabetic (NOD) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!