Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micro RNAs (miRNA) are a type of non-coding RNA involved in gene regulation and can be associated with diseases such as cancer, cardiovascular, and neurological diseases. As such, identifying the entire genome of miRNA can be of great relevance. Since experimental methods for novel precursor miRNA (pre-miRNA) detection are complex and expensive, computational detection using Machine Learning (ML) could be useful. Existing ML methods are often complex black boxes that do not create an interpretable structural description of pre-miRNA. In this paper, we propose a novel framework that makes use of generative modeling through Variational Auto-Encoders to uncover the generative factors of pre-miRNA. After training the VAE, the pre-miRNA description is developed using a decision tree on the lower dimensional latent space. Applying the framework to miRNA classification, we obtain a high reconstruction and classification performance while also developing an accurate miRNA description.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592592 | PMC |
http://dx.doi.org/10.3390/e26110921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!