Prepare Linear Distributions with Quantum Arithmetic Units.

Entropy (Basel)

Department of Physics, College of Science, Northeastern University, Shenyang 110819, China.

Published: October 2024

Quantum arithmetic logic units (QALUs) perform essential arithmetic operations within a quantum framework, serving as the building blocks for more complex computations and algorithms in quantum computing. In this paper, we present an approach to prepare linear probability distributions with quantum full adders. There are three main steps. Firstly, Hadamard gates are applied to the two input terms, preparing them at quantum states corresponding to uniform distribution. Next, the two input terms are summed up by applying quantum full adder, and the output sum is treated as a signed integer under two's complement representation. By the end, additional phase -1 is introduced to the negative components. Additionally, we can discard either the positive or negative components with the assistance of the Repeat-Until-Success process. Our work demonstrates a viable approach to prepare linear probability distributions with quantum adders. The resulting state can serve as an intermediate step for subsequent quantum operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592729PMC
http://dx.doi.org/10.3390/e26110912DOI Listing

Publication Analysis

Top Keywords

prepare linear
12
distributions quantum
12
quantum
9
quantum arithmetic
8
approach prepare
8
linear probability
8
probability distributions
8
quantum full
8
input terms
8
negative components
8

Similar Publications

Free fatty acids (FFAs) are important energy sources and significant for energy transport in the body. They also play a crucial role in cellular oxidative stress responses, following cell membrane depolarization, making accurate quantification of FFAs essential. This study presents a novel supercritical fluid chromatography-mass spectrometry (SFC-MS) method using selected ion recording in negative electrospray ionization mode, enabling rapid quantification of 31 FFAs within 6 min without derivatization.

View Article and Find Full Text PDF

Scalable one-step fabrication of integrated electrode arrays for highly sensitive and portable carbendazim detection.

Food Chem

January 2025

Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; HuaShan Technology Company Limited, Qianjiang 433136, China. Electronic address:

Highly sensitive and portable pesticide residues detection are indispensable for safeguarding food safety and environmental health. Herein, we introduce a one-step vacuum filtration strategy for the scalable production of cobalt-based conjugated coordination polymers (CoCCPs) electrode arrays, utilizing carboxylated single-walled carbon nanotubes (c-SWNTs) as bonding bridges (CoCCPs@c-SWNTs). Due to their abundant active sites and high conductivity, the CoCCPs@c-SWNTs arrays exhibit superior electrochemical performance (e.

View Article and Find Full Text PDF

Screening for inborn metabolic disorders (IMDs) in newborns is an important way to prevent serious metabolic and developmental difficulties that can result in lasting disabilities or even death. Electrospray ionization tandem mass spectrometry (MS/MS) provides an efficacious newborn blood spot screening (NBS) mechanism for analyzing dried blood spot specimens (DBSs) for biochemical markers for these conditions. Where possible, the elimination of derivatization in specimen preparation can simplify and streamline analysis.

View Article and Find Full Text PDF

Porphyrin-Based Covalent Organic Framework Reinforced Hollow Fiber for Solid-Phase Microextraction of Tebuconazole and Propiconazole.

J Sep Sci

January 2025

Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.

Herein, an amino-functionalized covalent organic framework was synthesized and accommodated in the pores of porous hollow fiber. In this context, tetra (4-aminophenyl) porphyrin was synthesized for preparing the desired covalent organic framework as the extracting sorbent and employed for hollow fiber solid-phase microextraction of tebuconazole and propiconazole. With respect to the amino groups of the as-synthesized porphyrin-based covalent organic framework, the extracting device has the ability of establishing a hydrogen bond with the selected model analytes.

View Article and Find Full Text PDF

Introduction: Artificial vascular scaffolds can mimic the structure of natural blood vessels and replace the damaged vessels by implanting them at the injury site to perform the corresponding functions. Electrospinning technology can perfectly combine biological signals and topographical cues to synergistically induce directed cell migration and growth.

Methods: In this study, poly (caprolactone) (PCL) nanofibers, PCL nanofibers uniformly coated with the extracellular matrix derived from endothelial cells (ECd), and bi-directional linear gradient ECd-coated PCL nanofibers were prepared by electrospinning and electrospray techniques to evaluate their effects on the proliferation and migration of Human umbilical vein endothelial cells (HUVECs) and rapid endothelialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!