A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of Laser Ablation Quality Based upon Entropy Analysis of Data Science. | LitMetric

Investigation of Laser Ablation Quality Based upon Entropy Analysis of Data Science.

Entropy (Basel)

Department of Semiconductor and Electro-Optical Technology, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan.

Published: October 2024

Laser ablation is a vital material removal technique, but current methods lack a data-driven approach to assess quality. This study proposes a novel method, employing information entropy, a concept from data science, to evaluate laser ablation quality. By analyzing the randomness associated with the ablation process through the distribution of a probability value (), we quantify the uncertainty (entropy) of the ablation. Our research reveals that higher energy levels lead to lower entropy, signifying a more controlled and predictable ablation process. Furthermore, using an interval time closer to the baseline value improves the ablation consistency. Additionally, the analysis suggests that the energy level has a stronger correlation with entropy than the baseline interval time (bit). The entropy decreased by 6.32 from 12.94 at 0.258 mJ to 6.62 at 0.378 mJ, while the change due to the bit was only 2.12 (from 10.84 at bit/2 to 8.72 at bit). This indicates that energy is a more dominant factor for predicting ablation quality. Overall, this work demonstrates the feasibility of information entropy analysis for evaluating laser ablation, paving the way for optimizing laser parameters and achieving a more precise material removal process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592790PMC
http://dx.doi.org/10.3390/e26110909DOI Listing

Publication Analysis

Top Keywords

laser ablation
16
ablation quality
12
ablation
9
entropy analysis
8
data science
8
material removal
8
ablation process
8
interval time
8
entropy
7
investigation laser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!