In recent years, numerous studies have highlighted the pivotal importance of miRNAs in personalized healthcare, showcasing broad application prospects. miRNAs hold significant potential in disease diagnosis, prognosis assessment, and therapeutic target discovery, making them an integral part of precision medicine. They are expected to enable precise disease subtyping and risk prediction, thereby advancing the development of precision medicine. GNNs, a class of deep learning architectures tailored for graph data analysis, have greatly facilitated the advancement of miRNA-disease association prediction algorithms. However, current methods often fall short in leveraging network node information, particularly in utilizing global information while neglecting the importance of local information. Effectively harnessing both local and global information remains a pressing challenge. To tackle this challenge, we propose an innovative model named DGNMDA. Initially, we constructed various miRNA and disease similarity networks based on authoritative databases. Subsequently, we creatively design a dual heterogeneous graph neural network encoder capable of efficiently learning feature information between adjacent nodes and similarity information across the entire graph. Additionally, we develop a specialized fine-grained multi-layer feature interaction gating mechanism to integrate outputs from the neural network encoders to identify novel associations connecting miRNAs with diseases. We evaluate our model using 5-fold cross-validation and real-world disease case studies, based on the HMDD V3.2 dataset. Our method demonstrates superior performance compared to existing approaches in various tasks, confirming the effectiveness and potential of DGNMDA as a robust method for predicting miRNA-disease associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591469 | PMC |
http://dx.doi.org/10.3390/bioengineering11111132 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Charles River Laboratories, Edinburgh, UK.
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!