Screening and Selection of a New Medium and Culture Conditions for Diosgenin Production via Microbial Biocatalysis of SYt1.

Bioengineering (Basel)

Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.

Published: October 2024

Diosgenin (DSG) is a phytosterol saponin mainly found in C.H. Wright. It has shown promising results in treating various diseases such as cancer, diabetes, arthritis, asthma, and cardiovascular diseases. Diosgenin is also an important medicinal chemical for synthesizing various steroid medicines. The production of diosgenin by acid hydrolysis generates a large amount of wastewater, leading to severe environmental pollution. However, producing diosgenin through microbial fermentation can effectively reduce environmental pollution. Numerous studies have demonstrated that various microorganisms can produce diosgenin via solid-state fermentation. Nevertheless, due to the complexity, high maintenance costs, uneven heat production, and other characteristics of solid-state fermentation, it is not commonly used in the industrial production of diosgenin. In contrast, liquid fermentation offers advantages such as simple operation, easy maintenance, and stable fermentation, making it more suitable for the industrial production of diosgenin. However, few studies have focused on producing diosgenin using liquid fermentation. In this study, endophytic SYt1 was used to produce diosgenin via liquid fermentation, with tuber powder as a substrate. Soxhlet extraction and silica gel column chromatography were employed to identify the diosgenin from the liquid fermentation products. Suitable fermentation conditions were screened and identified. The environmental variables that significantly affect the diosgenin yield were determined by the Plackett-Burman design (P-BD) with eight factors. The three factors (peptone, yeast extract powder and inorganic salt) with the greatest influence on the diosgenin yield were selected and further optimized using a response surface methodology (RSM). The final culture conditions were determined to be 35.79 g/L of peptone, 14.56 g/L of yeast extract powder, and 1.44 g/L of inorganic salt. The yield of diosgenin under these conditions was 132.57 mg/L, which was 1.8 times greater than the yield under pre-optimization conditions. This effective, clean, and promising liquid fermentation method possesses the potential to replace the traditional acid hydrolysis method for the industrial production of diosgenin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592201PMC
http://dx.doi.org/10.3390/bioengineering11111098DOI Listing

Publication Analysis

Top Keywords

liquid fermentation
20
production diosgenin
16
diosgenin
15
industrial production
12
diosgenin liquid
12
fermentation
10
culture conditions
8
acid hydrolysis
8
environmental pollution
8
producing diosgenin
8

Similar Publications

Background: is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of under salt stress are not fully understood.

View Article and Find Full Text PDF

Whey fermentation could produce bioactive substances with immunomodulatory effects, metabolic syndrome modulation, and antioxidant properties, thereby imparting functional characteristics to products and facilitating the development of novel foods with health-promoting potential. A non-targeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS) was employed to investigate changes in the metabolite profiles of whey fermented by strain KM812 over varying fermentation durations. The findings demonstrated a progressive enrichment of metabolites over time.

View Article and Find Full Text PDF

Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation.

BioTech (Basel)

December 2024

Department of Environmental Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan.

Sorghum distillers grains (SDGs) produced from a sorghum liquor company were used for generating biohydrogen via dark fermentation at pH 4.5-6.5 and 55 °C with a batch test, and the biohydrogen electricity generation potential was evaluated.

View Article and Find Full Text PDF

Multi-omic investigation identifies key antifungal biochemistry during fermentation of a Streptomyces biological control agent.

Microbiol Res

December 2024

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia.

The use of multi-omic approaches has significantly advanced the exploration of microbial traits, leading to the discovery of new bioactive compounds and their mechanisms of action. Streptomyces sp. MH71 is known for its antifungal properties with potential for use in crop protection.

View Article and Find Full Text PDF

Biotransformation analysis of daidzin in vitro based on fecal bacteria and probiotics.

J Pharm Biomed Anal

December 2024

Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100010, China. Electronic address:

Daidzin, as one of isoflavone glycosides, has been reported to have multiple activities with few absorbed into body. However, the metabolic behavior of daidzin by intestinal flora has not been researched, that this defect severely constrains its applications. In this study, daidzin and its metabolites were qualitatively and quantitatively analyzed by HPLC and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) in the fermentation system for daidzin and fecal bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!