Oleogels are semi-solid systems that can function both as replacers of trans and saturated fats and/or as carriers of lipophilic bioactive compounds. However, bioactive compounds can affect the structure of the oleogel matrix and this effect depends on the properties of such compounds. Therefore, the aim of this study was to develop oleogels loaded with β-carotene (BC) or resveratrol (R), with low concentrations of glycerol monostearate (GMS, 2-5 wt%) and sunflower oil as organic solvent. The gels were characterized by polarized light microscopy, rheological measurements, differential scanning calorimetry, oil binding capacity and Fourier transform infrared spectroscopy. At higher GMS concentrations, stronger oleogels and higher temperatures associated with transitions (sol-gel/gel-sol and crystallization/melting) were observed. The incorporation of bioactive compounds modified the gelation behavior. BC weakened the oleogel structure during the transient molecular organization of GMS, whereas R increased the dynamic moduli. BC also caused slight oil release at lower concentrations, while R improved retention. The high hydrophobicity of BC may be disturbing the solubility balance of the system, while R has phenolic hydroxyl groups that may strengthen hydrogen bonds. However, there were no considerable changes in mechanical properties after storage. We hypothesize that the molecular organization of GMS over time may be masking the modifications that bioactive compounds cause in mechanical properties. In fact, changes in the structure were revealed, as the addition of BC or R changed the morphology of the three-dimensional network crystals. Thus, the results can contribute to the rational choice of system components using low concentrations of oleogelator, as the composition of the bioactive compound exerts influence on the modulation of lipid matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115181 | DOI Listing |
Chem Biodivers
January 2025
Universidade Federal de Pernambuco, Pharmaceutical Sciences, Rua Prof Arthur de Sá, SN, 50740521, Recife, BRAZIL.
This study aimed to provide a comprehensive understanding of the acute and subacute safety and phytochemical profile of pomegranate leaves, aligning with the growing interest in sustainable, plant-based therapeutics. The phytochemical composition, the acute and subacute toxicity of a spray-dried hydroethanolic extract from pomegranate leaves (SDE) were investigated using experimental animal models. Utilizing UV-visible spectrophotometry and liquid chromatography-mass spectrometry (LC-MS), a diverse array of tannins and flavonoids, totaling 38 compounds, was identified.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Technology Ropar, Chemistry, Nangal Road, 140001, Rupnagar, INDIA.
Carbon dioxide (CO2) capture and its subsequent catalytic fixation into usable compounds represent a potential approach for addressing the energy problem and the implications of global warming. Hence, it is necessary to develop effective catalytic systems required for the transformation of CO2 into valuable chemicals/fuels. Herein, we rationally designed a hydroxyl-functionalized porous organic framework (OH-POF) consisting of both acidic (OH) as well as basic N sites for the transformation of CO2 using epoxides for the production of cyclic carbonates (CCs), a useful commodity chemical under environmental-friendly, metal/solvent/co-catalyst-free conditions.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Botany, School of Sciences, J. C. Road, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India.
Endophytic fungi are non-pathogenic organisms that colonise healthy plant tissues asymptomatically. Endophytes derived from medicinal plants are sources for identifying natural products and bioactive compounds with potential uses for industry, medicine, agriculture, and related sectors. In the present study, ethyl acetate crude extracts of four endophytic fungal isolates (CALF1, CALF4, and CASF1) from the medicinal plant Plectranthus amboinicus showed potent antimicrobial activity against the test pathogenic bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using disc diffusion assays.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Unlabelled: Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis.
Objective: With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!