Vegan and vegetarian diets are increasing in popularity. Consequently, the supply and demand of plant-based meat alternatives has increased steadily over the past few years. However, scientific research on spoilage processes for such products is still inadequate as compared to research on traditional meat products. In traditional meat products, biogenic amines are prominent spoilage markers and potential sources of food toxicity, especially for people sensitive to biogenic amines. Plant-based meat alternatives are manufactured to mimic the taste, look, texture, and nutritional value of meat, and they have a protein-rich basis. It is therefore hypothesized that biogenic amines could be markers for spoilage in such products as well. Further analysis of their presence and concentrations and comparison to conventional meat products is necessary. If biogenic amines are lower in plant-based meat alternatives, these products are possibly better suited for consumption by people with biogenic amine sensitivities. A simple and rapid extraction method, followed by HILIC-MS/MS separation and detection was therefore developed as a first step and validated for nine biogenic amines in plant-based meat alternatives. This method showed a strong linear correlation between amine concentration and detector response, high accuracy, and precision (< 12 %), as well as high sensitivity, as proven by the lowest limits of quantification (i.e., the lowest concentration within the calibration model) of 1 mg/kg for all analytes, which also compares well with other methods. Subsequently, as part of a pilot spoilage study, the method was applied to one vegetarian and nine vegan grill sausage alternatives during a period of 32 days of open-package storage at refrigerator temperature. Correlations with the results of microbiological testing of the same samples, as well as with the storage time were investigated. However, the results of the correlation analysis showed that biogenic amines are not suitable as spoilage indicators for plant-based meat alternatives, as almost no increase in biogenic amines was identified during the spoilage study for all the samples investigated. Differences in the microbiota of conventional meat products versus plant-based meat alternatives, as well as possibly lower concentrations of free amino acids, are proposed as reasons for biogenic amines not being similarly prevalent, and consequently, not being suitable spoilage markers in plant-based meat alternatives. However, as spoilage of the analyzed products was evident, both via sensory assessment and appearance of mold growth, further targeted and non-targeted research on potential spoilage markers for plant-based meat alternatives is required in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115265 | DOI Listing |
Sensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFNutrients
January 2025
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Objectives: This study aimed to analyze the associations between dietary polyamine intake and incident T2DM.
Methods: This prospective analysis included 168,137 participants from the UK Biobank who did not have T2DM at baseline. Dietary polyamines were calculated based on portion sizes of food items and a nutrient database.
Nutrients
December 2024
Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus de l'Alimentació de Torribera, Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain.
Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.
View Article and Find Full Text PDFFoods
December 2024
Department of Agricultural Chemistry, Edaphology, and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.
Although vinegar is a product obtained by a well-known bioprocess from a technical point of view, the complex microbiota responsible for its production and their involvement in the organoleptic profiles are not clear yet. In this work, three acetification profiles in submerged culture using both synthetic and raw materials from Andalusia (Spain) were characterized by metagenomic (16S rRNA amplicon sequencing) and metabolomic tools (stir-bar sorptive extraction with thermo-desorption coupled to gas chromatography-mass spectrometry (SBSE-TD-GC-MS) and high-performance liquid chromatography (HPLC)). A total of 29 phyla, 208 families, and many more genera were identified, comprising bacteria and archaea as well as 75 metabolites, including minor volatile compounds, amino acids, biogenic amines, and other nitrogenous compounds.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia.
Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!