A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of the polysaccharides synthesis enhancement mechanism from Agaricus bitoquis (Quél.) Sacc Chaidam and its fermentation regulation technology system based on multi-omics technologies. | LitMetric

AI Article Synopsis

  • - The study investigates how the anthocyanin extract from Lycium ruthenicum (LRA) can help delay aging in Agaricus bitoquis fungus cells while boosting the production of beneficial polysaccharides (PS) known for their anti-hypoxia and antioxidant properties.
  • - Through advanced analysis techniques like UHPLC-Q-TOFMS and RNA sequencing, researchers found that LRA alters metabolic pathways, encouraging the synthesis of polysaccharides and antioxidants, which enhances cell function and reduces toxicity.
  • - The optimized fermentation process demonstrated that adding LRA significantly increased mycelial biomass and production of extracellular and intracellular polysaccharides, with strong predictive models showing over 0.95 correlation coefficients, indicating accurate simulation of fermentation

Article Abstract

The polysaccharides (PS) of Agaricus bitoquis (Quél.) Sacc. Chaidam (ABSC) had attracted the attention of researchers due to their strong anti hypoxia, antioxidant, and anti fatigue activities. Therefore, this article focuses on studying the regulatory channels of exogenous additives-Lycium ruthenicum Murr. Anthocyanin (LRA) to delay fungus cell aging and promote the incremental synthesis of PS from ABSC, and optimizing the regulation system for pilot fermentation experiments. The joint analysis of Ultra High Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UHPLC-Q-TOFMS) and RNA sequencing (RNA-seq) database elucidates that at the molecular level, the crude extract of LRA inhibits the Telecommunications Association (TCA) cycle, transferring carbon metabolism to the synthesis of polysaccharide precursors (UDP-glucose, UDP-galactose, etc.), promoting the synthesis of PS, promoting the formation of key antioxidant substances (including flavonoids such as quercetin and alginate), improving cell membrane fluidity (saturated fatty acid to unsaturated conversion) and enhancing the degradation of toxic substances (oxidized glutathione), thereby promoting the anti-aging activity and PS synthesis ability of mycelial cells; LRA-adding could enhance the activity in the pilot fermentation of ABSC, which make the mycelia biomass, EPS and IPS production were significantly increased (89.04 %, 65.46 % and 37.64 % respectively) compared with the untreatment control. Based on the optimal fermentation system of PS synthesized in mycelium by adding LRA, Logistic, Gauss, and Asymptotic kinetic equations were used to describe the cell growth, product synthesis and regulatory substrate consumption from ABSC. The correlation coefficients of three models were all above 0.95, indicating a good fit between the experimental values and predicted value, this indicated ABSC fermentation kinetics model could better simulate the actual production process and provide theoretical data for the industrial production of polysaccharides. The results demonstrated that the present proposed LRA intensification approach could be useful to boost up the fermentation of ABSC, which possibly applied to yield increase and fermentation product acquisition of macrofungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115255DOI Listing

Publication Analysis

Top Keywords

agaricus bitoquis
8
bitoquis quél
8
quél sacc
8
sacc chaidam
8
pilot fermentation
8
fermentation absc
8
fermentation
7
synthesis
6
absc
6
investigation polysaccharides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!