Dynamic changes in dissolved oxygen concentration, microbial communities, and volatile compounds during industrial oak-barrel fermentation of Sauvignon Blanc wine.

Food Res Int

College of Enology, Northwest A&F University, Yangling 712100, China; National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling 712100, China; Shaanxi Key Laboratory for Viti-Viniculture, Yangling 712100, China. Electronic address:

Published: December 2024

Oak-barrel fermentation is used in white wine production to enhance aroma and flavor complexity. However, the dynamics of microbial communities and their impact on the formation of flavor compounds during barrel fermentation remain unclear. This study investigated the changes in dissolved oxygen concentrations, microbial communities, and volatile compounds during Sauvignon Blanc wine fermentation in various oak barrels (new and two-year-old Francois Freres and new Taransaud) and stainless-steel tanks. We found that oak barrels had higher dissolved oxygen levels than steel tanks, with new barrels exhibiting higher levels than the old ones during fermentation. The dominant bacterial genera across all the vessels during the fermentation included Ralstonia, Pantoea, Gluconobacter, and Mesorhizobium, whereas the dominant fungal genera were Saccharomyces, Aspergillus, Alternaria, and Aureobasidium. The fermentation environment altered the microbial composition as the fermentation progressed in various vessels. Compared with steel tanks, difference in microbial composition between oak barrels was less significant. The new oak barrels increased the levels of esters, alcohols, and acids in the wine, while only minor differences were observed between old barrels and steel tanks. Correlation analysis showed that Ralstonia, Gluconobacter, Mesorhizobium, and Saccharomyces were positively correlated with the production of wine volatiles. Structural equation modeling indicated the interactions between dissolved oxygen, microbial communities, and wine aromas. The impact of dissolved oxygen on fungal communities during fermentation differed significantly between new and old oak barrels, indirectly influencing aroma. Conversely, in stainless-steel tanks, dissolved oxygen weakly influenced the bacterial and fungal communities, with the influence on wine aroma primarily dependent on the fungal communities. These findings provide valuable insights for optimizing the Sauvignon Blanc wine fermentation in oak barrels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115250DOI Listing

Publication Analysis

Top Keywords

dissolved oxygen
24
oak barrels
24
microbial communities
16
sauvignon blanc
12
blanc wine
12
steel tanks
12
fungal communities
12
fermentation
10
changes dissolved
8
communities volatile
8

Similar Publications

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.

View Article and Find Full Text PDF

Lipid-coated oxygen microbubbles (OMBs) are being investigated for biomedical applications to alleviate hypoxia such as systemic oxygenation and image-guided radiosensitization therapy. Additionally, they hold potential for boarder application as oxygen carriers beyond the biomedical filed. Understanding the stability and oxygen release properties of OMBs in dynamic aqueous environments is critical for these applications.

View Article and Find Full Text PDF

Hyperbaric Oxygen Therapy (HBOT) is a medical treatment that involves administering 100% oxygen at increased atmospheric pressure to enhance oxygen delivery to tissues. Initially developed for decompression sickness, HBOT has since been utilized for a wide range of medical conditions, including severe infections, non-healing wounds, and, more recently, COVID-19. This review explores the historical development of HBOT, its principles, its emerging role in the management of and its outcome as treatment in COVID-19, particularly in mitigating inflammation, hypoxemia, and oxidative stress.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!