The influence of pulse cell wall structure and cellular protein matrix on the in vitro digestion kinetics of starch: A dual encapsulation mechanism.

Food Res Int

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China. Electronic address:

Published: December 2024

The intrinsic characteristics and extrinsic processing of whole-pulse food modulate the starch digestion rate and extent. This study investigated the dual encapsulation mechanism of cell wall structure and protein matrix on the in vitro digestion properties of intracellular starch, using an isolated whole-pulse food model of intact pea cotyledon cells subjected to alkaline buffer and enzymatic treatments. Results showed that intact cells with the maximum protein matrix content (18.9 %) exhibited the lowest peak temperature (71.4 °C, uncooked and 58.1 °C, cooked), enthalpy change (3.4 J/g, uncooked and 2.0 J/g, cooked), relative crystallinity (11.6 %), and starch digestion rate (0.0248 min) and extent (11.9 %) compared to alkaline buffer and enzymatic treatments. Even after enzymatic treatment, cells with minimal protein matrix content (1.8 %) exhibited a starch digestion rate (0.0387 min) and extent (39.7 %), which were still lower than those of isolated starch (0.0480 min and 56.8 %). These findings indicate that the protein matrix and cell walls act as a dual encapsulation system to slow starch hydrolysis. This provides a theoretical basis and technical guidance for developing low-glycemic whole-pulse foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115220DOI Listing

Publication Analysis

Top Keywords

protein matrix
20
dual encapsulation
12
starch digestion
12
digestion rate
12
cell wall
8
wall structure
8
matrix vitro
8
vitro digestion
8
encapsulation mechanism
8
whole-pulse food
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!