The role of genomic testing in rare disease clinical management is growing. However, geographical and socioeconomic factors contribute to inequitable uptake of testing. Geographical investigations of genomic testing across Australia have not been undertaken. Therefore, we aimed to investigate the geospatial distribution of genomic testing nationally between remoteness areas, and areas of varying socioeconomic advantage and disadvantage. We requested patient postcodes, age, and test type from genomic testing records from seven Australian laboratories for a 6-month period between August 2019 and June 2022. Postcode data were aggregated to Local Government Areas (LGAs) and visualised geospatially. Data were further aggregated to Remoteness Areas and Socio-Economic Index for Areas (SEIFA) quintiles for exploratory analysis. 11,706 records were eligible for analysis. Most tests recorded were paediatric (n = 8358, 71.4%). Microarray was the most common test captured (n = 8186, 69.9%). The median number of tests per LGA was 5.4 (IQR 1.0-21.0). Fifty-seven (10.4%) LGAs had zero tests recorded. Remoteness level was negatively correlated with number of tests across LGAs (rho = -0.781, p < 0.001). However, remote areas recorded the highest rate of testing per 100,000 populations. SEIFA score positively correlated with number of tests across LGAs (rho = 0.386, p < 0.001). The third SEIFA quintile showed the highest rate of testing per 100,000 populations. Our study establishes a foundation for ongoing assessment of genomic testing accessibility and equity and highlights the need to improve access to genomic testing for patients who are disadvantaged geographically or socioeconomically. Future research should include additional laboratories to achieve a larger representation of genomic testing rates nationally.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-024-01746-0DOI Listing

Publication Analysis

Top Keywords

genomic testing
20
testing australia
8
remoteness areas
8
data aggregated
8
tests recorded
8
number tests
8
testing
6
genomic
5
areas
5
assessing unmet
4

Similar Publications

The impact of genetic counselor involvement in genetic and genomic test order review: A scoping review.

Genet Med

January 2025

Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Women's Health Research Institute, Vancouver, BC, Canada. Electronic address:

Purpose: The increasing complexity of genetic technologies paired with more genetic tests being ordered by nongenetic healthcare providers, has resulted in an increase in the number of inappropriately ordered tests. Genetic counselors (GCs) are ideally suited to assess the appropriateness of a genetic test.

Methods: We performed a scoping review of GC involvement in utilization management initiatives in order to describe the impact of having GCs involved in this process.

View Article and Find Full Text PDF

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.

View Article and Find Full Text PDF

Introduction: Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS.

View Article and Find Full Text PDF

Global Perspectives on Returning Genetic Research Results in Parkinson Disease.

Neurol Genet

December 2024

From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.

Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!