A novel modified sensor based on electropolymerization of hippuric acid (HA) using cyclic voltammetry within the potential window - 1 to 1.5 V for 10 cycles at a scan rate 100 mV s over multiwalled carbon nanotubes (MWCNTs) on battery graphite electrode (BGE). Poly (HA)/MWCNTs/BGE sensor exhibited two linearity ranges 3.00 × 10 to 1.00 µM (5.29 × 10 - 0.18 µg/ml) and 5.00 to 1.00 × 10 µM (0.88- 176.22 µg/ml) with limit of detection (LOD) of 0.06 × 10 µM (1.06 × 10 µg/ml) and limit of quantification (LOQ) of 2.00 × 10 µM (3.52 × 10 µg/ml). The poly (HA)/MWCNTs/BGE sensor was successfully applied to the determination of SER in the presence of tryptophan and in human blood serum with recovery ranges 98.31-105.47% with RSD values 3.02- 4.77%. Green chemistry metrics : national environmental index (NEMI), analytical greenness metric (AGREE), Raynie and Driver, green analytical procedure index (GAPI), and the analytical eco-scale were employed and indicated that the proposed sensor can be classified as an excellent green method, achieving an analytical eco-scale score of 84.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599384 | PMC |
http://dx.doi.org/10.1038/s41598-024-80673-y | DOI Listing |
Adv Mater
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
ChemSusChem
January 2025
Yangzhou University, College of Chemistry and Chemical Engineering, Siwangting road, NO.180, 225002, Yangzhou, CHINA.
The integration of metal-organic frameworks (MOFs) with functional materials has established a versatile platform for a wide range of energy storage applications. Due to their large specific surface area, high porosity, and tunable structural properties, MOFs hold significant promise as components in energy storage systems, including electrodes, electrolytes, and separators for alkali metal-ion batteries (AIBs). Although lithium-ion batteries (LIBs) are widely used, their commercial graphite anode materials are nearing their theoretical capacity limits, and the scarcity of lithium and cobalt resources increases costs.
View Article and Find Full Text PDFThe widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS2-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g-1 at 0.5 A g-1 and 320 mAh g-1 at 20 A g-1 over 400 cycles.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Micro-sized silicon (µSi) anodes are an attractive alternative to graphite for high-energy lithium-ion batteries (LIBs) due to their low cost and high specific capacity. However, they suffer from severe volume expansion during lithiation, leading to fast capacity decay and poor rate capability. Herein, a new hybrid binder featuring a cross-linked conductive network and multiple hydrogen bonds for µSi anodes with high areal capacity is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!