Using generative adversarial network to improve the accuracy of detecting AI-generated tweets.

Sci Rep

School of Humanities and Law, Zhengzhou Shengda University, Zhengzhou, 451191, Henan, China.

Published: November 2024

This paper provides a novel approach using state-of-the-art generative Artificial Intelligence (AI) models to enhance the accuracy of machine learning methods in detecting AI-generated texts; the underlying generative capabilities are used along with ensemble-based learning methods for the exact characterization of created text attributes. Four basic steps are involved in the proposed methodology. The first step of the text process is the preprocessing stage itself consisting of several steps for the purification of irrelevant data. These stages include noise removal, text tokenization, removal of stop-words, word normalization, and handling uncommon words. In the next step, feature engineering and text representations are done whereby every preprocessed text is represented by a square matrix. This matrix encapsulates data about word correlations, cooccurrence, and word weights. The third step is Generative Adversarial Network (GAN)-based feature extraction, using a GAN model to extract efficient features in classifying the texts based on their creator type. After that, it turns the discriminator part into a strong feature extraction model. The fourth step is weighted Random Forest (RF)-based detection, with the features extracted by the discriminator of GAN serving as input to the RF-based detection model. This approach has covered the differences between texts generated by a human and that generated by Artificial Intelligence, with a significant improvement of 99.60% average accuracy, representing a 1.5% improvement against comparative methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599750PMC
http://dx.doi.org/10.1038/s41598-024-78601-1DOI Listing

Publication Analysis

Top Keywords

generative adversarial
8
adversarial network
8
detecting ai-generated
8
artificial intelligence
8
learning methods
8
feature extraction
8
rf-based detection
8
text
5
generative
4
network improve
4

Similar Publications

Objective: To assess whether CT style conversion between different CT vendors using a routable generative adversarial network (RouteGAN) could minimize variation in ILD quantification, resulting in improved functional correlation of quantitative CT (QCT) measures.

Methods: Patients with idiopathic pulmonary fibrosis (IPF) who underwent unenhanced chest CTs with vendor A and a pulmonary function test (PFT) were retrospectively evaluated. As deep-learning based ILD quantification software was mainly developed using vendor B CT, style-converted images from vendor A to B style were generated using RouteGAN.

View Article and Find Full Text PDF

Kawasaki Disease (KD) is a rare febrile illness affecting infants and young children, potentially leading to coronary artery complications and, in severe cases, mortality if untreated. However, KD is frequently misdiagnosed as a common fever in clinical settings, and the inherent data imbalance further complicates accurate prediction when using traditional machine learning and statistical methods. This paper introduces two advanced approaches to address these challenges, enhancing prediction accuracy and generalizability.

View Article and Find Full Text PDF

DNA storage is widely considered as a promising solution to the data explosion problem. However, the synthesis, PCR and sequencing processes usually result in erroneous reads involving base insertions, deletions, and substitutions. Specially this situation is even more serious in the 3rd generation of sequencing technologies.

View Article and Find Full Text PDF

The best layout design related to the sensor node distribution represents one among the major research questions in Wireless Sensor Networks (WSNs). It has a direct impact on WSNs' cost, detection capabilities, and monitoring quality. The optimization of several conflicting objectives, including as load balancing, coverage, cost, lifetime, connection, and energy consumption of sensor nodes, is necessary for layout optimization.

View Article and Find Full Text PDF

Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders.

Sci Rep

December 2024

Decisions LAB, Department of Law, Economics and Human Sciences, University Mediterranea of Reggio Calabria, Via dei Bianchi, 2, 89131, Reggio Calabria, Italy.

Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!