Viral mimicry evasion: a new role for oncogenic KRAS mutations.

Mol Oncol

Department of Medical Biophysics, University of Toronto, Canada.

Published: November 2024

"Viral mimicry" refers to the induction of an innate immune response and interferon signaling by endogenous stimuli such as double-stranded RNA (dsRNA). This response has been shown to have strong cancer therapeutic potential, including by enhancing the effectiveness of immune checkpoint inhibition (ICI) therapies, and may represent a tumor suppression mechanism that needs to be overcome for malignant transformation to proceed. In a recent study, Zhou and colleagues identify KRAS, a frequently mutated oncogene, as a negative regulator of dsRNA and viral mimicry in an ICI-resistant colorectal cancer model. Oncogenic KRAS mutations downregulate the RNA-binding protein DDX60 by activating the AKT signaling pathway, which inhibits STAT3, a critical transcription factor regulating DDX60 and other interferon-stimulated genes. Overexpression of DDX60, which competitively binds to dsRNA to prevent RISC-mediated degradation, or targeting of KRAS elevated dsRNA levels, resulting in viral mimicry activation and potentiation of ICI treatment. These results establish KRAS as a promising target to sensitize immune "cold" tumors to ICI therapy and demonstrate the potential role of oncogenic mutations in viral mimicry evasion during tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1878-0261.13771DOI Listing

Publication Analysis

Top Keywords

viral mimicry
16
mimicry evasion
8
role oncogenic
8
oncogenic kras
8
kras mutations
8
kras
5
viral
4
evasion role
4
mutations "viral
4
"viral mimicry"
4

Similar Publications

The Role of Structural Flexibility in Hydrocarbon-Stapled Peptides Designed to Block Viral Infection via Human ACE2 Mimicry.

Pept Sci (Hoboken)

November 2024

Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.

The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.

View Article and Find Full Text PDF

Current cancer treatments, including chemotherapy, surgery, and radiation, often present significant challenges such as severe side effects, drug resistance, and damage to healthy tissues. To address these issues, we introduce a virus-inspired RNA mimicry approach, specifically through the development of uridine-rich nanoparticles (UNPs) synthesized using the rolling circle transcription (RCT) technique. These UNPs are designed to mimic the poly-U tail sequences of viral RNA, effectively engaging RIG-I-like receptors (RLRs) such as MDA5 and LGP2 in cancer cells.

View Article and Find Full Text PDF

Targeting MXD1 sensitises pancreatic cancer to trametinib.

Gut

January 2025

State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China

Background: The resistance of pancreatic ductal adenocarcinoma (PDAC) to trametinib therapy limits its clinical use. However, the molecular mechanisms underlying trametinib resistance in PDAC remain unclear.

Objective: We aimed to illustrate the mechanisms of resistance to trametinib in PDAC and identify trametinib resistance-associated druggable targets, thus improving the treatment efficacy of trametinib-resistant PDAC.

View Article and Find Full Text PDF

The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.

View Article and Find Full Text PDF

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!