Nuclear Quantum Effects Enhance Structural Stability but Accelerate Charge Carrier Recombination in MHyPbBr Perovskite.

J Phys Chem Lett

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Published: December 2024

AI Article Synopsis

Article Abstract

Hybrid organic-inorganic perovskites exhibit significant nuclear quantum effects (NQEs) due to their light hydrogen atoms. By performing ring polymer molecular dynamics, ab initio molecular dynamics, and nonadiabatic molecular dynamics simulations on the MHyPbBr (MHy = CHNHNH) perovskites, we demonstrate that NQEs stabilize the lattice by suppressing atomic motions and accelerate nonradiative charge recombination. This stabilization arises from the synergistic effects of the Pb-N coordination bonds and N-H···Br hydrogen bonds, which enhance organic-inorganic interactions. As a result, Pb-Br octahedra, particularly [Pb(1)Br] octahedra supporting electron and hole, are well-preserved, promoting electronic wavefunction delocalization and increasing electron-hole overlap. These effects enhance nonadiabatic coupling by overcoming the reduced atomic motions. Overall, this and the prolonged decoherence time accelerate the nonradiative electron-hole recombination due to NQEs. Our study highlights the unique influence of NQEs on the geometrical stability and charge carrier dynamics in MHyPbBr, offering fundamental insights for future material design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03090DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
nuclear quantum
8
quantum effects
8
effects enhance
8
charge carrier
8
atomic motions
8
accelerate nonradiative
8
effects
4
enhance structural
4
structural stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!