Optimal estimation of local motion-in-depth with naturalistic stimuli.

J Neurosci

Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

Published: November 2024

AI Article Synopsis

  • Estimating depth motion is critical for behavior and relies heavily on binocular cues, which help the brain process and interpret 3D motion through patterns in visual information.
  • The study develops ideal observers using a dataset of binocular video clips to filter and decode 3D motion, revealing that humans use distinct processing filters for tasks like speed and direction estimation.
  • Findings suggest that optimal information processing in the visual system shapes human motion perception, highlighting the challenges posed by the variability of natural visual inputs.

Article Abstract

Estimating the motion of objects in depth is important for behavior, and is strongly supported by binocular visual cues. To understand both how the brain should estimate motion in depth and how natural constraints shape and limit performance in two local 3D motion tasks, we develop image-computable ideal observers from a large number of binocular video clips created from a dataset of natural images. The observers spatio-temporally filter the videos, and non-linearly decode 3D motion from the filter responses. The optimal filters and decoder are dictated by the task-relevant image statistics, and are specific to each task. Multiple findings emerge. First, two distinct filter subpopulations are spontaneously learned for each task. For 3D speed estimation, filters emerge for processing either changing disparities over time (CDOT) or interocular velocity differences (IOVD), cues that are used by humans. For 3D direction estimation, filters emerge for discriminating either left-right or towards-away motion. Second, the filter responses, conditioned on the latent variable, are well-described as jointly Gaussian, and the covariance of the filter responses carries the information about the task-relevant latent variable. Quadratic combination is thus necessary for optimal decoding, which can be implemented by biologically plausible neural computations. Finally, the ideal observer yields non-obvious-and in some cases counter-intuitive-patterns of performance like those exhibited by humans. Important characteristics of human 3D motion processing and estimation may therefore result from optimal information processing in the early visual system. Humans and other animals extract and process features of natural images that are useful for estimating motion-in-depth, an ability that is crucial for successful interaction with the environment. But the enormous diversity of natural visual inputs that are consistent with a given 3D motion-natural stimulus variability-presents a challenging computational problem. The neural populations that support the estimation of motion-in-depth are under active investigation. Here, we study how to optimally estimate local 3D motion with naturalistic stimulus variability. We show that the optimal computations are biologically plausible, and that they reproduce sometimes counterintuitive performance patterns independently reported in the human psychophysical literature. Novel testable hypotheses for future neurophysiological and psychophysical research are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0490-24.2024DOI Listing

Publication Analysis

Top Keywords

filter responses
12
local motion
8
natural images
8
estimation filters
8
filters emerge
8
latent variable
8
biologically plausible
8
motion
7
optimal
5
filter
5

Similar Publications

Background Recommendations regarding long-term postoperative activity are intended to prevent adverse events, but no common policy or best practice exists among ophthalmologists for pediatric patients. We surveyed ophthalmologists on their postoperative guidelines after the one-month postoperative period following childhood cataract and glaucoma surgeries. Methods A 28-question anonymous Qualtrics survey was distributed via listservs and social media.

View Article and Find Full Text PDF

The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.

View Article and Find Full Text PDF

Tunable Filters Using Defected Ground Structures at Millimeter-Wave Frequencies.

Micromachines (Basel)

December 2024

Center of Excellence for Thin-Film Research and Surface Engineering (CETRASE), Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA.

This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium titanate (BaSrTiO) (BST) thin film. BST film is used as the high-dielectric material for the planar DGS.

View Article and Find Full Text PDF

Esophageal cancer (EC) is one of the leading causes of cancer-related deaths globally. Surgery is the standard treatment for resectable EC after preoperative chemoradiotherapy or chemotherapy, followed by postoperative adjuvant chemotherapy in certain cases. Upper gastrointestinal endoscopy and computed tomography (CT) are predominantly performed to evaluate the efficacy of these treatments, but their sensitivity and accuracy for evaluating minimal residual disease remain unsatisfactory, thereby requiring the development of alternative methods.

View Article and Find Full Text PDF

Identifying potential mechanism and targets for treatment of tertiary lymphoid structure in lupus nephritis based on bioinformatics analysis.

Int Immunopharmacol

January 2025

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China. Electronic address:

Background: Tertiary lymphoid structure (TLS) is an ectopic lymphoid structure that develops in non-lymphoid structures. Some studies have shown that the TLS formed in autoimmune diseases, such as lupus nephropathy (LN), can cause damage to normal tissues and continuous disease progression. Nevertheless, there is still a lack of efficient treatments for TLS in LN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!