Eucommia ulmoides gum (EUG) with high purity was extracted directly from the Eucommia ulmoides pericarp using a biphasic solvent system consisting of deep eutectic solvent (DES) and petroleum ether. The addition of DES enabled the deconstruction of lignocellulose and the exposure of EUG, leading to the efficient dissolution of EUG in petroleum ether. The extraction rate of EUG was 22.986 %, and the purity of EUG was 98.01 %. The chemical structure of EUG was confirmed by FTIR and NMR characterization. XRD and DSC analysis reviewed the partial destruction of crystal structure and the decline of β-crystal phase of EUG during the extraction process. Moreover, the extracted EUG exhibited high tensile strength of 10.360 MPa, excellent elongation at break of 78.663 % ascribed to the unique crystallinity that enhanced the flexibility of molecular chains. In addition, the recycling performance of DES and petroleum ether was verified, and the recovery rate were up to 94.04 % and 82.60 %, respectively, indicating that this method is expected to replace the traditional pretreatment method for extracting EUG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138056 | DOI Listing |
J Med Food
December 2024
Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.
Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China. Electronic address:
Plant-derived antibacterial agents are increasingly pivotal in mitigating the escalating threat posed by pathogenic microorganisms. Dihydromyricetin (DMY), a plant bioactive compound prevalent in Ampelopsis grossedentata, exhibits remarkable antibacterial properties. However, its poor solubility in water significantly hinders its application in antibacterial therapies, necessitating the exploration of suitable carriers for the loading and sustained release of DMY.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2024
School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046, China Henan Key Laboratory of Chinese Medicine Resources and Chemistry Zhengzhou 450046, China Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao Zhengzhou 450046, China.
Trihelix transcription factors play important roles in plant light responses, growth and development, and stress responses. However, Trihelix has not yet been reported in Eucommia ulmoides. In this study, bioinformatics methods were used to comprehensively identify and analyze the expression patterns of the Trihelix gene family in E.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province/Key Laboratory of Ecology and Management on Forest Fire in Higher Education Institutions of Guizhou Province, Guizhou Education University, Guiyang, China.
, an important tree, faces serious threat to its growth from environmental stress, particularly climate change. Using plant microbes to enhance host adaptation to respond climate change challenges has been recognized as a viable and sustainable strategy. However, it is still unclear how the perennial tree microbiota varies across phenological stages and the links between respective changes in aboveground and belowground niches.
View Article and Find Full Text PDFACS Omega
December 2024
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Due to the increasing pressure of environmental protection and the depletion of oil resources, gum (EUG) as a natural renewable and degradable biopolymer has attracted more and more attention. In this work, multilayer carbon nanotube film (CNF)/EUG composite films were fabricated through the infiltration and hot-pressing process. By taking advantage of the elasticity of EUG and the specific strength of CNF, composite films exhibited much more improved mechanical strength (maximum tensile stress up to 108.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!