Light intensity moderates photosynthesis by optimizing photosystem mechanisms under high VPD stress.

Plant Physiol Biochem

College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China. Electronic address:

Published: January 2025

In recent decades, the global increase in vapor pressure deficit (VPD) has significantly inhibited plant growth and photosynthesis. Light intensity, a crucial environmental regulator, plays a vital role in stress response and photosynthetic adjustment. This study investigated whether increasing light intensity under high VPD conditions could optimise the photosystem and thereby enhance photosynthesis. We designed experiments using factorial combinations of two VPD levels (HVPD; high VPD, AVPD; appropriate VPD) and two irradiance gradients (L300; 300 μmol photons m s, L600; 600 μmol photons m s). Under high VPD, plants protect their photosystems by reducing light energy absorption and limiting photosynthetic electron flow, which results in reduced photosynthesis. However, when exposed to HVPD + L600, plants exhibited increased light energy absorption, as evidenced by elevated chlorophyll b and carotenoid levels, enhanced response to irradiance, and decreased NPQ and Y(NO). This regimen also enhanced photosynthetic electron transport by increasing the total driving force and plastoquinone pool, consequently improving the photochemical efficiency of the photosystem and ultimately boosting the net photosynthetic rate by 46.9%. This study confirmed that modulating light intensity under high VPD stress can improve photosynthesis by optimizing the photosystem. This novel approach can be utilized to enhance tomato production in arid regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109322DOI Listing

Publication Analysis

Top Keywords

high vpd
20
light intensity
16
photosynthesis optimizing
8
optimizing photosystem
8
vpd
8
vpd stress
8
intensity high
8
light energy
8
energy absorption
8
photosynthetic electron
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!