A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diet and exercise in frailty and sarcopenia. Molecular aspects. | LitMetric

Diet and exercise in frailty and sarcopenia. Molecular aspects.

Mol Aspects Med

Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.

Published: December 2024

AI Article Synopsis

  • Lifelong function declines due to aging, chronic diseases, and lifestyle factors, leading to issues like frailty and disability, especially impacting skeletal muscle through conditions like sarcopenia.
  • The manuscript explores the age-related changes in skeletal muscle, discussing how these changes affect quality of life and independence in older adults.
  • It highlights exercise as a key intervention for reversing frailty, examines various training programs, the nutritional factors influencing muscle health, and discusses genetic interventions aimed at enhancing resilience against muscle aging.

Article Abstract

Function declines throughout life although phenotypical manifestations in terms of frailty or disability are only seen in the later periods of our life. The causes underlying lifelong function decline are the aging process "per se", chronic diseases, and lifestyle factors. These three etiological causes result in the deterioration of several organs and systems which act synergistically to finally produce frailty and disability. Regardless of the causes, the skeletal muscle is the main organ affected by developing sarcopenia. In the first section of the manuscript, as an introduction, we review the quantitative and qualitative age-associated skeletal muscle changes leading to frailty and sarcopenia and their impact in the quality of life and independence in the elderly. The reversibility of frailty and sarcopenia are discussed in the second and third sections of the manuscript. The most effective intervention to delay and even reverse frailty is exercise training. We review the role of different training programs (resistance exercise, cardiorespiratory exercise, multicomponent exercise, and real-life interventions) not only as a preventive but also as a therapeutical strategy to promote healthy aging. We also devote a section in the text to the sexual dimorphic effects of exercise training interventions in aging. How to optimize the skeletal muscle anabolic response to exercise training with nutrition is also discussed in our manuscript. The concept of anabolic resistance and the evidence of the role of high-quality protein, essential amino acids, creatine, vitamin D, β-hydroxy-β-methylbutyrate, and Omega-3 fatty acids, is reviewed. In the last section of the manuscript, the main genetic interventions to promote robustness in preclinical models are discussed. We aim to highlight the molecular pathways that are involved in frailty and sarcopenia. The possibility to effectively target these signaling pathways in clinical practice to delay muscle aging is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mam.2024.101322DOI Listing

Publication Analysis

Top Keywords

frailty sarcopenia
16
skeletal muscle
12
exercise training
12
frailty disability
8
frailty
7
exercise
6
sarcopenia
5
diet exercise
4
exercise frailty
4
sarcopenia molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!