New prospects for Zr-immuno-PET in brain applications - Alpha-synucleinopathies.

Nucl Med Biol

Amsterdam UMC location Vrije Universiteit Amsterdam, Dept Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands. Electronic address:

Published: November 2024

AI Article Synopsis

  • * Background research highlights how Zr-immuno-PET imaging can effectively visualize therapeutic antibodies utilizing transferrin-mediated transport across the blood-brain barrier and emphasizes the significance of alpha-synuclein in diseases like Parkinson’s.
  • * The methodology involved conjugating antibodies with a chelator and using various analyses, including radioim

Article Abstract

Background: Recently, Zr-immuno-PET imaging of therapeutic antibodies, actively transported over the blood-brain-barrier via transferrin-mediated transcytosis, was demonstrated using the chelator DFO*. In these studies, aducanumab targeting amyloid-beta was fused with a transferrin binding unit: a single-chain Fab fragment derived from 8D3 (scFab8D3). Alpha-synuclein is a hallmark protein of several neurodegenerative diseases such as Parkinson's Disease, Lewy-Body-Dementia, and Multiple System Atrophy. Zr-immuno-PET imaging of alpha-synuclein can be a valuable tool for image-guided drug development and assessment of target engagement. The goal of this study was to compare two currently used constructs of 8D3 for targeting potential, namely a single moiety of scFab8D3 fused to the alpha-synuclein antibody HLu-3 (HLu-3-scFab8D3) versus HLu-3 fused with two 8D3 single-chain variable fragments (HLu-3-(scFv8D3)), by Zr-immuno-PET in an alpha-synuclein pre-formed fibril (PFF) deposition model. HLu-3 and the HIV-targeting B12-scFab8D3 were used as controls. The best-performing compound was further investigated in an animal model with predominantly intraneural target aggregation.

Methods: Antibodies were conjugated with DFO* using DFO*-NCS and subsequently radiolabeled with Zr. Assessment of binding affinity was done by alpha-synuclein ELISA and with FACS analysis using mTfR1 expressing CHO-S cells. Radioimmunoconjugates were first evaluated in an extracellular alpha-synuclein deposition model established by intracranial injection of non-sonicated PFFs into the left striatum of C57Bl/6 WT mice, whereas saline was injected into the contralateral site as control. PET imaging was performed 1, 3, and 7 days post-injection, followed by ex vivo biodistribution, autoradiography and immunofluorescence analysis. Based on the results from these studies, the better-performing antibody candidate was tested similarly in an alpha-synuclein seeding model. The seeding model has intraneural alpha-synuclein aggregation and was established by intracranial injection of sonicated PFFs into both striata of F28tg mice, which overexpress human wild-type alpha-synuclein. Untreated F28tg and C57Bl/6 WT mice served as controls.

Results: The radioimmunoconjugate was produced in sufficient radiochemical yields and purity. There was no impairment of binding affinity towards alpha-synuclein, and acceptable binding with negligible losses to mTfR1. PET imaging with [Zr]Zr-HLu-3-scFab8D3 and [Zr]Zr-HLu-3-(scFv8D3) in the deposition model showed uptake at the site of alpha-synuclein deposits. However, uptake was variable between mice. Reliable PET quantification was hampered due to the small deposition volume (~2 μL). Immunofluorescence revealed specific alpha-synuclein target engagement of both constructs with PFF deposits in the striatum, in contrast to the [Zr]Zr-B12-scFab8D3 control. Unexpectedly, ex vivo autoradiography showed uptake in some controls ([Zr]Zr-B12-scFab8D3 in the contralateral striatum without PFFs), potentially related to astrocyte activation at the injection sites. Ex vivo and PET brain uptake was higher for [Zr]Zr-HLu-3-scFab8D3 when compared to [Zr]Zr-HLu-3-(scFv8D3) and was therefore selected for further testing in the alpha-synuclein seeding model. No significant difference in in vivo and ex vivo brain uptake of [Zr]Zr-HLu-3-scFab8D3 between PFF-injected F28tg, F28tg and C57Bl/6 mice was observed. Furthermore, ex vivo immunofluorescence and autoradiography showed no specific alpha-synuclein target engagement.

Conclusions: Successful target engagement of [Zr]Zr-HLu-3-scFab8D3 and [Zr]Zr-HLu-3-(scFv8D3) with alpha-synuclein was shown in a PFF deposition model. PET imaging showed variable results, and in vivo detection of the depositions was possible in some cases. Due to the better performance in the deposition model, [Zr]Zr-HLu-3-scFab8D3 was further investigated in an alpha-synuclein seeding model with intraneural Lewy-body pathology, showing no difference between the control groups and PFF-seeded mice. Furthermore, immunostaining of seeded F28tg mice manifested sufficient intraneural alpha-synuclein pathology but no corresponding antibody accumulation. These results underscore the ongoing challenge of imaging intraneural inclusions via immuno-PET.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2024.108969DOI Listing

Publication Analysis

Top Keywords

deposition model
20
alpha-synuclein
17
seeding model
16
target engagement
12
model intraneural
12
c57bl/6 mice
12
pet imaging
12
alpha-synuclein seeding
12
model
10
zr-immuno-pet imaging
8

Similar Publications

Determination of alkali metal elements in solid biomass fuel by laser-induced breakdown spectroscopy: Analysis and reduction of chemical matrix effects.

Anal Chim Acta

February 2025

School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:

Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.

View Article and Find Full Text PDF

Background: Benzodiazepine abuse remains a significant public health concern. Current sample preparation methods for benzodiazepine analysis from human serum often involve complex procedures that require large sample volumes and extensive organic solvent use. To address these limitations, this study presents a novel and efficient sample preparation method utilizing 3D-printed sorbent devices.

View Article and Find Full Text PDF

Antifibrotic potential of Reserpine (alkaloid) targeting Keap1/Nrf2; oxidative stress pathway in CCl-induced liver fibrosis.

Chem Biol Interact

January 2025

Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan. Electronic address:

The death rate due to liver cancer approaches 2 million annually, the majority is attributed to fibrosis. Currently, there is no efficient, safe, non-toxic, and anti-fibrotic drug available, suggesting room for better drug discovery. The current study aims to evaluate the anti-fibrotic role of reserpine, an alkaloid plant compound against CCl-induced liver fibrosis.

View Article and Find Full Text PDF

The tongue facilitates vital activities such as swallowing. Swallowing difficulties (dysphagia) are common in the elderly and in many adult-onset neuromuscular diseases. In oculopharyngeal muscular dystrophy (OPMD), dysphagia is often the first symptom.

View Article and Find Full Text PDF

Thermosensitive-based synergistic antibacterial effects of novel LL37@ZPF-2 loaded poloxamer hydrogel for infected skin wound healing.

Int J Pharm

January 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:

Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!